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1 Introduction
Problems arising in the study of polynomials are often much easier to work with when translated into
topology. Two examples are the work of Smale and McMullen on root-finding algorithms. Arnol’d’s work
with compositions of multivalued algebraic functions, of which Hilbert’s thirteenth problem is a special case,
is another.

In 1900, David Hilbert published a famous list of 23 problems which he believed would shape mathematics
for the 20th century. The thirteenth problem in this list was as follows [H]:

Problem 1.1. Consider the degree 7 polynomial

z7 + az3 + bz2 + cz + 1 = 0 (1.1)

and consider z as a function in the three variables a, b, c. Is it possible to write z as a composition of a finite
number of algebraic functions in two variables?

Note here that since z is multi-valued, it is to be considered as a map C3 → Sym7 C. The algebraic
functions in the decomposition of z are also functions into SymdC, and by composition it is loosely meant any
new function obtained using addition and composition of functions (this is made formal below). For example,
the continuous function (x, y) 7→ xy is the composition of one-variable functions: xy = exp(log(x) + log(y)).
A variant of this problem using the composition of continuous, not algebraic, functions was proven true by
Arnol’d and Kolmogorov. In fact, it was shown to hold for any three-variable continuous function. However,
the algebraic version of the problem is still open.

At first glance these problems seem to be extremely disjoint and not at all connected. However, it will be
seen that the solution to these problems relies heavily on translating an algebraic problem into topology and
dynamics. The following table summarizes the list of problems that will be discussed:

Algorithms used Topological Topological
to Find Roots Problem Obstruction

Abel-Ruffini Express a general Sections over a Monodromy:
solution in radicals solvable cover π1(X)→ Sd

Smale and Tree traversal algorithms Covering number; Cohomology:
Vassiliev defined by rational maps Local sections H∗(Poly∗d;−)
McMullen Generally convergent Attractive holomorphic Monodromy:

algorithms families of rational maps Bn → Mod(Ĉ \A)

2 Fuchs’ Cohomology Computation
In this section we give a result on the cohomologies of pure configurations and unordered configurations. This
will be used as a topological obstruction to problems discussed in later sections.



Let PConfnC and ConfnC denote the ordered and unordered configuration spaces, respectively. The
fundmental groups of these spaces are the pure braid group Pn and the braid group Bn, respectively.

Theorem 2.1 (Fuchs, [Fu]). The ring H∗(ConfnC;Z2) has generators am,k for m = 0, . . . , n and k = 1, . . . , n
of degree 2k(2m − 1) with relations a2

m,k = 0 and am1,k1 · · · ams,ks
= 0 if and only if 2m1+···+ms+k1+···+ks > n.

Proof Sketch. This theorem is proven by constructing a cellular structure on ConfnC where the cells of
dimension k are in bijective correspondence with the ordered partitions of n into a sum of n− k integers. A
chain is said to be dyadic if each term in the partitions of n corresponding to each cell is a power of 2 and a
cell is symmetric if it is invariant under action by Sn−k. It is then possible to realize H∗(ConfnC;Z2) as the
subring of C∗(ConfnC;Z2) consisting of dyadic, symmetric chains.

Fuchs uses this result to prove that the kth Stiefel-Whitney class of the vector bundle ξn over ConfnC
arising from the homomorphism Bn → Sn → O(n) is the sum of all elements in the chosen basis of
Hk(ConfnC;Z2) given in the theorem.

3 Bounds Related to Hilbert’s Problem
Here, an extremely useful construction is detailed. Begin with a map p : Ck → Cn with polynomial coordinates.
Let f : Ck → Symn C be the algebraic function associated to the polynomial

P (x, z) = zn + p1(x)zn−1 + · · ·+ pn(x), (3.1)

i.e. f sends x ∈ Ck to the set of roots z of polynomial P (x, z). Let Gf denote the set of all x ∈ Ck such
that P (x, z) = 0 is satisfied for exactly n distinct values of z. We assume Gf 6= ∅. Define Ef = {(x, z) : x ∈
Gf , P (x, z) = 0}. It is clear that the space Gf is the variety defined by ∆ ◦ p 6= 0, where ∆ is the discriminant
of P (x, z) with respect to z. The covering map Ef → Gf is projection onto the first coordinate. This is an
n-fold cover, so that its monodromy group, denoted Mon(f) is a subgroup of the symmetric group Sn on n
elements.

Theorem 3.1 (Abel-Ruffini). The polynomial

zn + a1z
n−1 + · · ·+ an = 0

is solvable in radicals if and only if n ≤ 4.

The lesser known topological proof, due to Arnol’d [Zol], of this theorem is given at the end of Section 3.2.

Example 3.2. Let d > 1. Consider the polynomial P (x, z) = zd− x. Then, Gf = C \ {0} and Ef consists of
all pairs (x, y) where x 6= 0 and yd = x. It is also easy to see that the monodromy group is Mon(f) ∼= Z/dZ.

3.1 Superpositions of Multi-valued Functions
Given two multi-valued mappings f : X → Symm Y and g : Y → Symn Z we can take their composition
g ◦ f : X → Symmn Z by sending x to the mn points g(y) where y is one of the n values of x under f . We get
another mapping g ∗ f : X → Symmn(Y × Z) by sending x to the set of points (f(x), g(y)), where y ranges
over the values f(x).

Definition 3.3. For i = 0, . . . , N , let ϕi : C` → Symni C be algebraic functions and let pi : Ck+i → C`
be maps with polynomial coordinates. Let Φi = ϕi ◦ pi and define a sequence of functions inductively by
F0 = Φ0 ∗ id and Fi = Φi ∗Fi−1 for i = 1, . . . , N − 1. Let f = ΦN ◦FN−1. If a function can be represented in
this form, it is said to be a superposition of algebraic functions of ` variables. In function notation, this gives
a sequence of functions in the variable x ∈ Ck:

F0(x) = x, F1(x) = (x,Φ1(x)), F2(x) =
(
x,Φ1(x),Φ2(x,Φ1(x))

)
, . . .
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Hilbert’s 13th problem, stated more formally, asks whether you can write the algebraic function defined
by (1.1) as a superposition of algebraic functions of 2 variables.

Example 3.4. Let p : C2 → C2 denote the map (x1, x2) 7→ (3x1, 2x2) and consider the algebraic function f
sending a point x = (x1, x2) to the roots of the polynomial z3 + 3x1z + 2x2. Then, defining

Φ0 =
√
x2

2 + x3
1,Φ1 = 3

√
Φ0 − x2,Φ2 = 3

√
−x2 − Φ0,

it is seen that the values of f(x) are a subset of the values of (Φ1 + Φ2)(x). We thus represent f as an
indecomposable component of the 18-valued map Φ1 + Φ2.

The superposition of algebraic functions is also algebraic. This can easily be seen by noting that the
coefficients of the polynomial defining f are polynomials in the coefficients of the polynomials pi constituting
the coefficients of the algebraic functions ϕi.

3.2 Superpositions as Covering Maps
One way to think about superpositions is as a decomposition of covering spaces. Suppose f is an algebraic
function represented as a superposition as in Definition 3.3. We define a sequence

Ef = XN → XN−1 → · · · → X0 → Gf

of covering maps as follows. We let X0 be the covering space obtained by restricting EΦ0 → GΦ0 to Gf ⊂ GΦ0 .
At each step, Φi is a multi-valued map on Xi−1 ⊂ GΦi

and we can define Xi → Xi−1 to be the covering
EΦi

→ GΦi
restricted to Xi−1. This is equivalent to defining Xi → Xi−1 inductively as the pullback of

Eϕi−1 → Gϕi−1 along pi−1 : Xi−1 → Gϕi−1 for each i = 1, . . . , N .

Example 3.5. Consider the multi-valued function f =
√
z + 3
√
z. It is possible to construct its associated

covering space using the diagram

(C \ {0})2 (x, y) 7→ x + y- C

C \ {0}
z 7→ (z, z) - (C \ {0})2

(x, y) 7→ (x2, y3)

?

The pullback cover over C \ {0} is then the subspace X = {(z, x, y) : z = x2 = y3} ⊂ (C \ {0})3. The
monodromy group Mon(f) is isomorphic to Z/2Z× Z/3Z ∼= Z/6Z.

The last example above is generalizable to the following:

Proposition 3.6. Let f, g be algebraic functions. The monodromy group of f + g, fg and f/g are all
quotients of the product Mon(f)×Mon(g).

Proof. If the functions f and g are defined by polynomials p and q, then considering the diagram

X - Ef × Eg
+ - C

Gf+g

?
⊂ Gf ∩Gg

z 7→ (z, z) - Gf ×Gg

Mon(f)×Mon(g)

?

The branched cover Ef+g → Gf+g is an intermediate cover of X → Gf+g. Multiplication and division are
similar.
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Also note that composing an algebraic function f with the kth root gives a surjection Mon( k
√
f) � Mon(f)

with kernel Z/kZ. Solvable groups satisfy the following properties: 1) products of solvable groups are solvable,
2) quotients of a solvable group by a normal subgroup are solvable and 3) if G� H is surjective with abelian
kernel and H is solvable, then G is solvable. Thus, we find that if an algebraic function can be built from
arithmetic functions and radicals, its monodromy group must be solvable. This proof of the Abel-Ruffini
theorem was due to Arnol’d [Zol].

An easy consequence of this theorem is that the general cubic z3 +az+b cannot be solved without a nested
radical. Suppose otherwise. Then the solution will have the form of f(a, b) = Q(ϕ ◦ P (a, b), (a, b)), where
ϕ : Ci → Ci, for some i, is the algebraic function defined by taking some radical of each of it’s components.
In terms of topology, ϕ describes a cover (C \ {0})i → (C \ {0})i with abelian monodromy group, which
contradicts the fact that the monodromy group of the algebraic function defined by z3 + az + b is S3.

3.3 Bounds on Superpositions
Let Dp(n) be the sum of the digits in the base p expansion of n for some prime p. The following theorem is a
result due to Arnol’d [Ar]:

Theorem 3.7. If f is the universal algebraic function given by (3.1) then f cannot be written as the
composition of algebraic functions in < n−D2(n).

It will turn out that if f : Cn → Symn C is the universal algebraic function in n variables and if f
can be represented as a superposition of algebraic functions in k variables, then it must have the form
f(x) = Q(ϕ ◦ P (x), x), where P,Q are maps with polynomial coordinates and ϕ is an algebraic function in
k variables. This is equivalent to saying that there are no nontrivial intermediate coverings of Ef → Gf .
The polynomial P defines a map Gf → Gϕ which induces a map on cohomology with Z2 coefficients. If
k < n−D2(n) is small, then the following facts give us the contradiction we need:

1. Hn−D2(n)(Gϕ;Z2) = 0 where D2(n) is the number of ones in the binary expansion of n. Proof: Gϕ is a
k-dimensional Stein manifold, a 2k-dimensional Stein manifold, and is therefore homotopy equivalent
to a real k-dimensional manifold.

2. The Stiefel-Whitney class wn−D2(n)[f ] of Ef → Gf is the image under P ∗ of the Stifel-Whitney class
wn−D2(n)[ϕ] of Eϕ → Gϕ. Proof: the covering space Ef → Gf is isomorphic to the pullback bundle of
Eϕ → Gϕ under the map P : Gf → Gϕ.

3. wn−D2(n)[f ] 6= 0. Proof: this is a calculation by Fuchs [Fu].

Vassiliev [Vas] improved the lower bound to n−Dp(n) for any prime p. Although this theorem cannot
be applied to Hilbert’s 13th, the techniques used here reduce Hilbert’s 13th Problem to understanding the
cohomology of the space Gf associated to (1.1).

4 Root-finding Algorithms: Smale and Vassiliev
From here on, we will let Pε(d) denote any algorithm with input a polynomial p and output a d-tuple of
complex numbers (ξ1, . . . , ξd) such that if r1, . . . , rd are the roots of p, then |ξi − ri| < ε for each i. Such an
algorithm is allowed to have four types of nodes:

1. Input node. We allow as input any degree d polynomial.
2. Computational node: takes the output from the previous node and enters them into a series of rational

functions. The output is a tuple of numbers.
3. Branching node: takes the output from a previous computational node and compares it with zero. The

algorithm then proceeds in one of two directions depending on one of the two answers.
4. Output node. This gives a d-tuple of complex numbers.
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The complexity of such an algorithm is defined to be the number of branching nodes. Using Fuchs’ [Fu]
calculation, Smale [Sm] gave a lower bound of (log2 d)2/3, for all ε > 0 in some neighborhood of 0, for the
complexity of Pε(d). This was dramatically improved by Vassiliev [Vas].

Theorem 4.1 (Vassiliev, [Vas]). There is an ε(d) > 0 such that the complexity of the problem Pε(d) is greater
than or equal to d−Dp(d), for all ε < ε(d) and every prime p.

Proof Sketch. The Schwartz genus g(f) of a map f : X → Y to be the minimum number of open sets covering
Y which admit a section of f . In particular, we will consider the covering map π : PConfd(C)→ Confd(C),
which is also a principal Sd-bundle. The chain of inequalities that lead up to Vassiliev’s result is

complexity of Pε(d) ≥ g(π)− 1
≥ hA(π)− 1, for any Sn-representation A.

The definition of the homological genus hA of a G-fibration f : X → Y , with respect to a G-representation
A is as follows. The map f induces a homotopy class of maps c : Y → BG, which induces the map
c∗ : Hj(BG;A)→ Hj(Y ; c∗A) on the twisted cohomology. The homological A-genus hA(f) is defined to be
the smallest i such that this map is trivial for all j ≥ i. This reduces the proof of the theorem to calculating
hA for a certain Sn-representation A.

We let A = Z as abelian groups and let Sn act via the sign representation Sn → Aut(Z). This defines a
system of twisted coefficients on BSn which can be pulled back to a system c∗A on ConfnC via the classifying
map c : ConfnC→ BSn. We have the following.

Lemma 4.2. The chain complex C∗(ConfnC; c∗A) is a subcomplex of C∗(BSn;A).

Lemma 4.3. Hn−1(ConfnC; c∗A) is isomorphic to Z/pZ for n a power of the prime p and 0 if n is not the
power of a prime p.

There are no cells of dimension n. Hence, hA(π) = n− 1 if n is the power of a prime. The final bound
given by Theorem 5.1 comes from partitioning n = pk1 + · · ·+ pks and considering a small neighborhood U of
some polynomial with roots of multiplicities pki . Restricting a fiber bundle decreases the homological genus
and U \ {∆ = 0} is homeomorphic to the product Confpk1C× · · · × ConfpksC. The result follows from the
Künneth formula.

4.1 Vassiliev’s Upper Bound
In this section, we give the upper bound n − 1 ≥ complexity of Pε(n) by giving an explicit algorithm
with complexity n − 1. This bound is also due to Vassiliev [Vas]. The basic idea is to use the Weierstraß
approximation theorem (WAT) to decompose Polyn into easy to understand subsets and then use the WAT
again to approximate the roots on each of these subsets.

Let ε > 0. First, define the metric d on the space Polyn by

d(p, q) = min
σ∈Sn

(
max

1≤i≤n
|ξσ(i) − ξ′σ(i)|

)
,

where ξi are the (ordered) roots of p and ξ′i are the roots of q.
Partition Polyn into subsets S1, . . . , Sn where St is the set of polynomials with exactly t distinct roots.

For each t, let S′′t and S′t be the 2−2t+1ε-neighborhood and 2−2tε-neighborhood of St, respectively, so that
St ⊂ S′t ⊂ S′′t . By the WAT, there is a polynomial χt : Polyn → R such that

S′t ⊂ Vt := {χt ≤ 0} ⊂ S′′t .

If a ∈ Vt \ Vt−1 then a lies in an (2−2t+1ε)-neighborhood of exactly one component of St. Suppose this
partition corresponds to the partition n = n1 + · · ·+nt. Partition the roots of a into sets of order ni, according
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to the ordering of their real parts. We can then order the real parts of these roots, then the imaginary parts
(using the lexographic ordering via the sets in the partition). We obtain 2n polynomials r1, . . . , rn, s1, . . . , sn
prescribed by the WAT, approximating the mean of the roots in each set and the imaginary parts separately.

The algorithm is as follows: let a be a polynomial. Compute ξ1(a). If ξ1 ≤ 0, output (r1 + is1, . . . , rn+ isn)
following the method described above. If ξ1(a) ≥ 0, compute ξ2 and compare with 0 and so on. It is clear
that this algorithm has complexity n− 1.

4.2 Relation to Obstruction Theory
We now turn to a slightly different question. If ε > 0 and d is a positive integer, let P′ε(d) be any algorithm
that approximates a single root of a general degree d polynomial to within ε.

Consider the universal algebraic function f for polynomials of degree n and the covering space ϕ : Ef →
Gf = ConfnC. Just as in Smale’s [Sm] argument, complexity of P′ε(d) ≥ g(ϕ)− 1.

Theorem 4.4 (Vassiliev, [Vas]). If n is the power of a prime, then g(ϕ) = n and the complexity P′ε(d) ≥ n−1.

The proof of this theorem relies on constructing the obstruction to g(ϕ) < n and showing that it is
nontrivial when n is the power of a prime. We define a new fibration Θ : X → Gf by as the fiberwise join of
n− 1 copies of ϕ. Then, the fibers of Θ are homotopically equivalent to the wedge sum Fn =

∨
Sn−2 taken

over (n− 1)n−1 copies.

Proposition 4.5 (Schwarz, [Sc]). The genus g(ϕ) < n if and only if Θ has a section.

The obstruction θ to the existence of a section lies in

Hn−1(ConfnC;πn−2(Fn)) ∼= Hn−1
(

ConfnC; H̃⊗(n−1)
)
,

where H̃ is the coefficient system corresponding to the monodromy π1(ConfnC)→ H̃0(n points) on reduced
homology via ϕ. There is only a single cell e in ConfnC of codimension n− 1 consisting of all configurations
of points with equal real part. Order the lifts of ϕ over e by ξ1, . . . , ξn. The obstruction θ is homologous to
(ξn−1 − ξn)⊗ · · · ⊗ (ξ1 − ξ2).

We have the homomorphism H̃⊗n−1 →
∧n−1

H̃ where the latter local system is isomorphic to the local
system c∗A from above. The obstruction θ is mapped to a generator of Hn−1(ConfnC; c∗A), which is nonzero
if n is the power of a prime.

5 Generally Convergent Algorithms: McMullen
The results in the following section are due to Curt McMullen [Mc].

Definition 5.1. Let Ratk denote the space of rational maps of degree k. A purely iterative algorithm is a
mapping T : Polyd → Ratk, sending p ∈ Polyd to Tp ∈ Ratk, such that the coefficients of Tp are rational
functions in the coefficients of p. Such an algorithm is said to be generally convergent if there is an open set
of full measure U ⊂ Polyd × C such that Tnp (z) converges to a root of p as n→∞ for every (p, z) ∈ U .

Example 5.2. Newton’s method is a basic example of a purely iterative algorithm which is generally
convergent for polynomials of degree 2. This algorithm is not generally convergent for polynomials of degree
3 or more.

Additionally, we have the following map T given by

p(z) = z3 + az + b 7→ Tp(z) = z − (z3 + az + b)(3az2 + 9bz − a2)
3az4 + 18bz3 − 6a2z2 − 6abz − 9b2 − a3 .
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Newton’s method is generally convergent for degree 2, but not degree 3 or more. This map is obtained by
applying Newton’s method to the rational function

r(z) = p(z)
3az2 + 9bz − a2 .

The example above is generally convergent for cubics.

The main theorem for this section is the following.

Theorem 5.3. There does not exist a generally convergent algorithm for polynomials of degree ≥ 4.

Let X be a complex manifold and let T : X → Ratk, written x 7→ Tx, be holomorphic. Let x ∈ X be
a basepoint and let f := Tx. The family (X, f) is said to be attractive if there is an open dense subset U
of P1 of full measure and a finite set A (the attractor) such that fn(z) tends to a A for each z in U . We
have a monodromy representation π1(X,x)→ Mod(P1 \A) and we let Mod(X, f) denote the image of this
homomorphism. Theorem 5.3 will be derived as a result of the following theorem.

Proposition 5.4. For any attractive family (X, f), the monodromy group Mod(X, f) is finite, reducible, or
fixes a point of A.

For degree d ≥ 4 polynomials, there are open sets V ⊂ Polyd such that any purely iterative algorithm on
Polyd has monodromy group which is infinite, irreducible, and acts transitively. Theorem 5.3 follows.

Proof Sketch: Theorem 5.4. Let J be the Julia set of f and let Mod(J ∪A, f) be the modular group of f on
J∪A defined to be the set equivalence classes of maps φ : P1 → P1 which are quasiconformal, φ(J∪A) = J∪A
and commute with f under the equivalence relation of isotopy through homeomorphisms satisfying these three
conditions. The universal monodromy group of (A, f), denoted Univ(A, f), is the image of the homomorphism
Mod(J ∪A, f)→ Mod(P1 \A) given by taking [φ] to its action on P1 \A. The monodromy representation
π1(X, f) → Mod(P1 \ A) factors through this homomorphism so that the monodomy group Mod(X, f) of
an attractive family with attractor A is a subgroup of Univ(A, f). The final step comes by showing that if
Univ(A, f) is irreducible and fixed-point free then it is finite.
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