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Abstract

The extended mapping class group of a surface Σ is defined to be the group of
isotopy classes of (not necessarily orientation-preserving) homeomorphisms of Σ. We
are able to show that the extended mapping class group of an n-punctured sphere is
generated by two elements of finite order exactly when n 6= 4. We use this result to
prove that the extended mapping class group of a genus 2 surface is generated by two
elements of finite order.

1 Introduction
Let Σg,n be an orientable, genus g surface with n punctures and let Σg = Σg,0. We let
Mod

(
Σg,n

)
denote the mapping class group of Σg,n, i.e. isotopy classes of orientation-

preserving homeomorphisms Σg,n → Σg,n, and let Mod±
(
Σg,n

)
be the corresponding

extended mapping class group, i.e. isotopy classes of orientation-preserving or re-
versing homemorphisms Σg,n → Σg,n. Our concern in this paper will mainly be on
the groups Mod±(Σ2) and Mod±(Σ0,n). We consider the following question:

Question 1.1. Find minimal generating sets S of Mod±
(
Σg,n

)
such that each element of S is

of finite order.

1.1 Previous Work
The problem of finding generating sets, all of whose elements satisfy a given property
(e.g. finite order), is classical and has been extensively studied. In 1938, Dehn [3],
proved that Mod

(
Σg,0

)
was generated by 2g(g− 1) Dehn twists for g ≥ 3. Later, in

1964, Lickorish, [11], improved this to g ≥ 1 and reduced the number of Dehn twists
needed to 3g − 1. This was reduced further still to 2g + 1 in 1977 by Humphries,
[6], using a subset of Lickorish’s generating set. Johnson, [7], showed in 1983 that
Humphries’ generators also generate Mod

(
Σg,1

)
for g ≥ 1. Wajnryb showed in 1996

that Mod
(
Σg,n

)
can be generated by two elements, however, these elements are not

Dehn twists.
In regards to torsion generating sets, Maclachlan [13] showed that Mod

(
Σg

)
is

generated by a finite set of torsion elements, concluding that moduli space is simply-
connected. Luo [12] showed that Mod

(
Σg,n

)
is generated by torsion elements, giving
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specific bounds for the order of generators given (g, n). In particular, he shows that
Mod

(
Σg,n

)
is generated by a involutions for g ≥ 2. Brendle and Farb [2] show that

Mod
(
Σg,n

)
, for g ≥ 1, is generated by three elements of finite order and for g ≥ 3, n =

0 and g ≥ 4, n = 1, Mod
(
Σg,n

)
is generated by six involutions. Kassobov [8] shows

that Mod
(
Σg,n

)
can be generated by

4 involutions if g > 7 or g = 7 and n is even,
5 involutions if g > 5 or g = 5 and n is even,
6 involutions if g > 3 or g = 3 and n is even,
9 involutions if g = 3 and n is odd.

Korkmaz shows in [9] that Mod
(
Σg

)
is generated by two elements of finite order and

later showed in [10] that Mod
(
Σg

)
is generated by three involutions for g ≥ 8 and four

involutions for g ≥ 3. Yildiz [18] shows that Mod
(
Σg

)
is generated by two elements

of order g for g ≥ 6.
However, the corresponding question about Mod±

(
Σg,n

)
remains largely unan-

swered. Du showed in [4], [17] that Mod±(Σ1) ∼= GL2(Z) cannot be generated by two
elements of finite order and, for g > 2, the group Mod±

(
Σg

)
is generated by two ele-

ments of finite order. Later, Altunöz et. al. in [16] showed that Mod±
(
Σg

)
is generated

by three involutions for g ≥ 5 and, moreover, Mod±
(
Σg,n

)
can be generated by three

involutions for g = 10, n ≥ 6 or g ≥ 11, n ≥ 15. In [14], Monden shows that, for g ≥ 3
and n ≥ 0, the groups Mod

(
Σg,n

)
and Mod±

(
Σg,n

)
are generated by two elements.

The question of whether Mod±(Σ2) can be generated by such elements remained
open. In this paper, we answer in the affirmative. In the course of the proof, we show
that

Theorem 1.2. The group Mod±
(
Σg,n

)
can be generated by finite order elements for g =

0, n 6= 4 and g = 2, n = 0. Moreover, Mod±(Σ0,4) cannot be generated by finite order
elements.

2 Preliminaries

2.1 Spherical Braid Group
Given any surface Σ, the classical braid group can be generalized to the braid group
on Σ, denoted Bn(Σ) := π1(Confn(Σ)), where Confn(Σ) is the space of unordered
configurations of n distinct points on Σ. In particular, we will be interested in the
spherical braid groups Bn(S2). We have a surjective homomorphism Bn → Bn(S2) with
kernel generated by the central element Rn := σ1 . . . σn−1σn−1 . . . σ1. Then Bn(S2) has
the presentation given by generators σ̃1, . . . , σ̃n−1 and relations

• σ̃iσ̃j = σ̃jσ̃i for |i− j| > 2
• σ̃iσ̃jσ̃i = σ̃jσ̃iσ̃j for |i− j| = 1
• Rn = 1.

We turn our attention to the relationship between Bn(S2) and Mod(Σ0,n). We have
the exact sequence

0→ 〈β〉 → Bn(S2)
ψ−→ Mod(Σ0,n)→ 0 (1)
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where β = (σ̃1 . . . σ̃n−1)
n and 〈β〉 ∼= Z/2Z (see [5], Section 9.1.4 and 9.2).

Here, we let σi = ψ(σ̃i) for 1 ≤ i ≤ n− 1. Since we are interested in elements of
finite order, we record the following result:

Proposition 2.1. The elements of Mod(Σ0,n) of finite order are conjugate to a power of one
of the following:

Element Factoring Order
α0 σ1 . . . σn−1 n
α1 σ1 . . . σn−2 n− 1
α2 σ1 . . . σn−3σ2

n−2 n− 2

Proof. Let σ̃i refer to the standard generators of Bn(S2). Let f ∈ Mod(Σ0,n) such that
f k = 1. There exists a lift f̃ ∈ Bn(S2). Thus, f̃ k is a power of β ∈ Bn(S2), from (1),
which has finite order and so f̃ is also periodic. From [15], f̃ must be conjugate to a
power of one of

• σ̃1 . . . σ̃n−1,
• σ̃1 . . . σ̃n−2σ̃2

n−1, or
• σ̃1 . . . σ̃n−3σ̃2

n−2.

Note that (σ1 . . . σn−2σ2
n−1)

−1 = σn−2 . . . σ1 is conjugate to σ1 . . . σn−2 in Mod(Σ0,n). To
see this, suppose Σ0,n is the unit sphere in R3 and arrange the marked points p1, . . . , pn
in order and uniformly along the equator of the sphere. Define φ : Σ0,n → Σ0,n by
rotating π radians along the axis through pn and the center of Σ0,n. Then,

[φ] · σi · [φ]−1 = σn−1−i

for all 1 ≤ i ≤ n− 2. Hence, f is conjugate to a power of one of the elements in the
table.

We will also make use of the following relations, which hold in Mod(Σ0,n,0):

α0σiα
−1
0 = σi+1 for 1 ≤ i < n− 1 (2)

α1σiα
−1
1 = σi+1 for 1 ≤ i < n− 2 (3)

α2σiα
−1
2 = σi+1 for 1 ≤ i < n− 3 (4)

In particular, Mod(Σ0,n,0) is generated by σ1 and α0.

2.1.1 Birman-Hilden

We introduce the Birman-Hilden exact sequence for Σ2. For details, see [1] and [5].

Theorem 2.2 (Birman-Hilden). Let ι ∈ Mod(Σ2) denote the mapping class of an involution
on Σ2 with 6 fixed points. There is an exact sequence

0→ 〈ι〉 → Mod(Σ2)→ Mod(Σ0,6)→ 0. (5)

The following result will be useful in Section 4.3 to prove part of the main theorem.
It extends the Birman-Hilden exact sequence to the extended mapping class group.
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Proposition 2.3. Let ι ∈ Mod(Σ2) denote the mapping class of an involution on Σ2 with 6
fixed points. There is an exact sequence

0→ 〈ι〉 → Mod±(Σ2)
Ψ−→ Mod±(Σ0,6)→ 0.

Proof. Let φ ∈ Mod±(Σ2) be orientation-reversing. Since there exists an orientation-
reversing homeomorphism T : Σ2 → Σ2 which is fiber-preserving, we may pick a
representative f : Σ2 → Σ2 of φ which is fiber-preserving: there is a representative
g of [T]φ which is fiber preserving by [1] and so we may take f = T−1 ◦ g. Letting
π : Σ2 → Σ0,6 denote the branched covering map, we define f̄ : Σ0,6 → Σ0,6 by
f̄ = π ◦ f ◦ π−1.

Suppose f and f ′ are both representatives of φ, that is, f and f ′ are isotopic. Then
T ◦ f and T ◦ f ′ are orientation-preserving, isotopic and fiber-preserving. By Theorem
2.2, these maps are isotopic through fiber-preserving homemorphisms, say H : Σ2 ×
[0, 1] → Σ2 is such an isotopy. Hence, H′ = T−1 ◦ H is a fiber-preserving isotopy
between f and f ′. This isotopy then descends to an isotopy between f̄ and f̄ ′. Thus,
we have a well-defined map Ψ : Mod±(Σ2) → Mod±(Σ0,6) given by [ f ] 7→ [ f̄ ]. Since
Ψ|Mod(Σ2) is exactly the Birman-Hilden homomorphism from (5) and the kernel of this
map must lie in Mod(Σ2), we see that ker(Ψ) = 〈ι〉.

3 Periodic Elements in Mod±(Σ0,n)

Let n ≥ 1. For our standard model of Σ0,n, we take the unit sphere embedded in R3

along with marked points pk, k = 0, . . . , n− 1, given by

pk =

(
cos

2πk
n

, sin
2πk

n
, 0

)
.

Let T : Σ0,n → Σ0,n denote the map given by T(x, y, z) = (x, y,−z). We also let T
denote the isotopy class of this homeomorphism in Mod±(Σ0,n). Let σi, for 1 ≤ i ≤
n− 1, denote the mapping class of the right Dehn twist about the arc connecting pi to
pi+1 along the equator. Note that Tσi = σ−1

i T for each 1 ≤ i ≤ n− 1.
We have the following presentation for Mod±(Σ0,n): generators are σ1, . . . , σn−1,

and T with relations

• T2 = (Tσi)
2 = 1, for 1 ≤ i ≤ n− 1,

• σiσj = σjσi, for |i− j| ≥ 2,
• σiσjσi = σjσiσj, for |i− j| = 1,
• (σ1 . . . σn−1)

n = 1,
• σ1 . . . σn−1σn−1 . . . σ1 = 1

This is the presentation obtained from the isomorphism Mod±(Σ0,n) ∼= Mod(Σ0,n)o
Z/2Z where the non-identity element T of Z/2Z acts on Mod(Σ0,n) by σi 7→ σ−1

i .
Recall that the orientation-preserving mapping classes of finite order are given by

Proposition 2.1. Using the presentation above, we have that

Tα0T = σ−1
1 . . . σ−1

n−1

= (σ1 . . . σn−1σn−1 . . . σ1) · σ−1
1 . . . σ−1

n−1
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= σ1 . . . σn−1

= α0.

Thus, Tα0 is periodic with order n if n is even and order 2n if n is odd. We also easily
see that

(Tσ1σ3 . . . σ2k−1)
2 = 1,

for each k = 0, . . . , bn/2c. Lastly,

(Tσ−1
n−1)α2(Tσ−1

n−1) = Tσ−1
n−1α0σ−1

n−1σn−2Tσ−1
n−1

= σn−1α0σn−1σ−1
n−2σ−1

n−1

= α0σn−2σn−1σ−1
n−2σ−1

n−1

= α0σ−1
n−1σn−2

= α2.

Thus, Tσ−1
n−1 and α2 commute and Tσ−1

n−1α2 has order n− 2 if n is even or 2(n− 2) if n
is odd.

For general n, these do not exhaust all possibilities of orientation-reversion pe-
riodic elements, even up to conjugacy. For example, when n = 9, there exists an
orientation-reversing mapping class of order 6, acting by the permutation (1 2 3 4 5 6)(7 8 9)
on the marked points, which is not covered by any of the above examples or their
powers. However, it would be interesting to find a classification of all finite-order
elements of Mod±(Σ0,n) in terms of the generators σi.

4 Proof of Main Theorem
This section is divided into 3 subsections, each dealing with a proof of particular case
of Theorem 1.2.

4.1 Mod±(Σ0,4) cannot be generated by two periodic elements
Theorem 4.1. The group Mod±(Σ0,4) cannot be generated by two elements of finite order.

Proof. Consider the short exact sequence

0→ 〈−Id〉 → GL2(Z)
q−→ PGL2(Z)→ 0. (6)

If Ā ∈ PGL2(Z) has Āk = Id ∈ PGL2(Z), then for any representative A of Ā,
Ak = ±Id so A is periodic. Suppose that PGL2(Z) is generated by two elements
Ā, B̄ of finite order. Then, if A, B are representatives of Ā, B̄, then A and B generate
a subgroup H of GL2(Z). For any g ∈ GL2(Z), the only representatives of q(g) are
g and −g, so either g ∈ H or −g ∈ H. Hence, the index [GL2(Z) : H] ≤ 2. Thus,
GL2(Z)/H is abelian and [GL2(Z), GL2(Z)] ≤ H. Note that −Id = [x, y], where

x =

(
0 1
1 0

)
and y =

(
−1 0
0 1

)
.
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Thus, −Id ∈ H. But then H = −H and so [GL2(Z) : H] = 1 which contradicts the
result from [17]. Therefore, PGL2(Z) cannot be generated by two elements of finite
order. Since we have a surjection Mod±(Σ0,4)→ PGL2(Z), see Section 2.2.5 of [5], the
group Mod±(Σ0,4) cannot be generated by two finite order elements.

Note that Mod±(Σ0,4) can be generated by the three periodic elements T, Tσ1, and
α0.

4.2 Periodic generation of Mod±(Σ0,n), for n 6= 4
We begin with a simple observation:

Proposition 4.2. If n is odd, then Mod±(Σ0,n) is generated by Tσ1 and Tα0.

Proof. Let H := 〈Tσ1, Tα0〉. We have that

(Tα0)
n = Tnαn

0 = T.

Therefore, T ∈ H and so σ1, α0 ∈ H. Since σ1 and α0 generate Mod(Σ0,n), we have
Mod(Σ0,n) ≤ H, but since T ∈ H \Mod(Σ0,n), we must have that H = Mod±(Σ0,n).

This proposition shows that for odd n, the theorem is immediate since Tσ1 has
order 2 and Tα0 has order 2n. We now turn to the more difficult case.

Theorem 4.3. For all even n ≥ 6, Mod±(Σ0,n) is generated by a = σn−3Tα0σ−1
n−3 and

b = Tσ−1
n−1α2.

To prove this, we proceed in a sequence of steps. Let H = 〈a, b〉. We will make use
of the following relations. For k 6= n− 6, n− 4, n− 2,

a2σka−2 = σn−3α2
0σ−1

n−3 · σk · σn−3α−2
0 σ−1

n−3

= σn−3α2
0 · σk · α−2

0 σ−1
n−3

= σn−3σk+2σ−1
n−3

= σk+2.

Lemma 4.4. We have

y :=
n−1

∏
k=1
k odd

σk = σ1σ3 . . . σn−1 ∈ H.

Proof. We first compute the following:

x0 = b−2ab

=
(
α−2

2
)
·
(

σn−3Tα0σ−1
n−3

)
·
(

Tσ−1
n−1α2

)
=

(
σ−1

n−2σn−1α−1
0

) (
σ−1

n−2σn−1α−1
0

)
· σn−3 Tα0σ−1

n−3T σ−1
n−1α0σ−1

n−1σn−2

= σ−1
n−2σn−1α−1

0 σ−1
n−2σn−1α−1

0 · σn−3 α0σn−3 σ−1
n−1α0σ−1

n−1σn−2

= σ−1
n−2�

��σn−1 σ−1
n−3���σn−2 σn−5σn−4�

��σ−1
n−2�

��σ−1
n−1 σn−2
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= σ−1
n−2σ−1

n−3σn−5σn−4σn−2

x1 = x0ax−1
0

=
(

σ−1
n−2σ−1

n−3σn−5σn−4σn−2

)
· σn−3Tα0σ−1

n−3 ·
(

σ−1
n−2σ−1

n−4σ−1
n−5σn−3σn−2

)
= σ−1

n−2σ−1
n−3σn−5σn−4σn−2 · σn−3Tα0σ−1

n−3 · σ
−1
n−2σ−1

n−4σ−1
n−5σn−3σn−2

= σ−1
n−2σ−1

n−3σn−5σn−4σn−2σn−3α0σn−3σn−2σn−4σn−5σ−1
n−3σ−1

n−2T

= σ−1
n−2σ−1

n−3σn−5σn−4σn−2σn−3σn−2σn−1σn−3σn−4σ−1
n−2σ−1

n−1Tα0

x2 = x1a−1

= σ−1
n−2σ−1

n−3σn−5σn−4σn−2σn−3σn−2σn−1σn−3σn−4σ−1
n−2σ−1

n−1 Tα0 · σn−3Tα−1
0 σ−1

n−3

= σ−1
n−2σ−1

n−3σn−5σn−4σn−2σn−3σn−2σn−1σn−3σn−4σ−1
n−2σ−1

n−1 σ−1
n−2 σ−1

n−3

= σ−1
n−2σ−1

n−3σn−5σn−4σn−2σn−3σn−2σn−1σn−3σn−4 σ−1
n−2σ−1

n−1σ−1
n−2 σ−1

n−3

= σ−1
n−2σ−1

n−3σn−5σn−4σn−2σn−3σn−2���σn−1 σn−3σn−4 �
��σ−1

n−1 σ−1
n−2σ−1

n−1 σ−1
n−3

= σ−1
n−2σ−1

n−3σn−5σn−4σn−2 σn−3σn−2σn−3 σn−4σ−1
n−2σ−1

n−1σ−1
n−3

= σ−1
n−2σ−1

n−3σn−5σn−4σn−2 σn−2σn−3���σn−2 σn−4�
��σ−1

n−2 σ−1
n−1σ−1

n−3

= σ−1
n−2σ−1

n−3σn−5 σn−4σn−2σn−2 σn−3σn−4σ−1
n−1σ−1

n−3

= σn−5σ−1
n−2σ−1

n−3 σn−2σn−2σn−4 σn−3σn−4σ−1
n−1σ−1

n−3

= σn−5σ−1
n−2σ−1

n−3σn−2σn−2 σn−4σn−3σn−4 σ−1
n−1σ−1

n−3

= σn−5σ−1
n−2σ−1

n−3σn−2σn−2 σn−3σn−4���σn−3 σ−1
n−1�

��σ−1
n−3

= σn−5σ−1
n−2σ−1

n−3σn−2σn−2σn−3σn−4σ−1
n−1

x3 = x2b−1

= σn−5σ−1
n−2σ−1

n−3σn−2σn−2σn−3σn−4σ−1
n−1 · σ

−1
n−2σn−1 α−1

0 σn−1 T

= σn−5σ−1
n−2σ−1

n−3σn−2σn−2σn−3σn−4σ−1
n−1σ−1

n−2σn−1 σn−2α−1
0 T

= σn−5σ−1
n−2σ−1

n−3σn−2σn−2σn−3σn−4σ−1
n−1 σ−1

n−2σn−1σn−2 α−1
0 T

= σn−5σ−1
n−2σ−1

n−3σn−2σn−2σn−3σn−4�
��σ−1

n−1 �
��σn−1 σn−2σ−1

n−1 α−1
0 T

= σn−5σ−1
n−2σ−1

n−3σn−2σn−2σn−3 σn−4σn−2 σ−1
n−1α−1

0 T

= σn−5σ−1
n−2σ−1

n−3σn−2σn−2σn−3 σn−2σn−4 σ−1
n−1α−1

0 T

= σn−5σ−1
n−2σ−1

n−3σn−2 σn−2σn−3σn−2 σn−4σ−1
n−1α−1

0 T

= σn−5σ−1
n−2σ−1

n−3σn−2 σn−3σn−2σn−3 σn−4σ−1
n−1α−1

0 T
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= σn−5σ−1
n−2σ−1

n−3 σn−2σn−3σn−2 σn−3σn−4σ−1
n−1α−1

0 T

= σn−5�
��σ−1

n−2�
��σ−1

n−3 ���σn−3���σn−2 σn−3 σn−3σn−4σ−1
n−1α−1

0 T

= σn−5σn−3σn−3σn−4σ−1
n−1α−1

0 T

x4 = x3a

= σn−5σn−3σn−3σn−4σ−1
n−1 α−1

0 T · σn−3Tα0 σ−1
n−3

= σn−5σn−3���σn−3�
��σn−4 σ−1

n−1 �
��σ−1

n−4 �
��σ−1

n−3

= σn−5σn−3σ−1
n−1

Define γk := σkσk+2σ−1
k+4 where subscripts are taken modulo n. Also,

a2kγ1a−2k = a2kσ1σ3σ−1
5 a−2k

= a2kσ2k+1σ2k+3σ−1
2k+5a−2k

= γ2k+1

for all odd k. The above computations show that γn−5 ∈ H. Hence, γk ∈ H for all odd
k. Thus,

y = γ1γ3 . . . γn−1

= σ1σ3 . . . σn−3σn−1

∈ H.

One can see this by noting that each pair of the σi’s which appear in y commute
and hence, the right-hand side can be obtained by adding exponents for each σi which
appears.

Lemma 4.5. We have

z := σn−2

n−5

∏
k=1
k odd

σk = σ1σ3 . . . σn−5σn−2 ∈ H.

Proof. We start with

ab = σn−3Tα0σ−1
n−3 · Tσ−1

n−1α0σ−1
n−1σn−2

= σn−3α0σn−3σ−1
n−1α0σ−1

n−1σn−2

=
(

α0σ−1
n−1

)2
σn−5σn−4σn−2

Let ∆k := σkσk+1σk+3 for 1 ≤ k ≤ n− 5. Then,(
α0σ−1

n−1

)2
∆k = ∆k+2

(
α0σ−1

n−1

)2
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for 1 ≤ k ≤ n− 7 and

ab =
(

α0σ−1
n−1

)2
∆n−5

= α0σ−1
n−1α0σ−1

n−1σn−5σn−4σn−2

= α2
0σ−1

n−2σ−1
n−1σn−5σn−4σn−2

= α2
0σn−5σn−4σ−1

n−2σ−1
n−1σn−2

= σn−3σn−2α2
0σn−1σ−1

n−2σ−1
n−1

= σn−3σn−2σ1

(
α0σ−1

n−1

)2
.

∆1∆3∆5 . . . ∆n−5 = σ1σ2σ4 · σ3σ4σ6 · σ5σ6σ8 . . . σn−7σn−6σn−4 · σn−5σn−4σn−2

= σ1σ2σ3 · σ4σ3σ5 · σ6σ5σ7 . . . σn−6σn−7σn−5 · σn−4σn−5σn−2

= σ1σ2 . . . σn−4 · σ3σ5 . . . σn−5σn−2

= α0σ−1
n−1σ−1

n−2σ−1
n−3 · σ3σ5 . . . σn−5σn−2

= α0σ−1
n−1σ−1

n−2σ−1
n−3 · σ

−1
1 z.

Therefore,

(ab)
n
2−1 =

[ (
α0σ−1

n−1

)2
∆n−5

]
·
(

α0σ−1
n−1

)2
∆n−5 . . .

(
α0σ−1

n−1

)2
∆n−5

=

[
σn−3σn−2σ1

(
α0σ−1

n−1

)2
]
·
(

α0σ−1
n−1

)2
∆n−5 . . .

(
α0σ−1

n−1

)2
∆n−5

= σn−3σn−2σ1

(
α0σ−1

n−1

)n−2
∆1∆3∆5 . . . ∆n−7∆n−5

= σn−3σn−2σ1

[ (
α0σ−1

n−1

)n−2
· α0σ−1

n−1

]
σ−1

n−2σ−1
n−3 · σ

−1
1 z

= σn−3σn−2σ1σ−1
n−2σ−1

n−3 · σ
−1
1 z

= z,

where we use the fact that α0σ−1
n−1 = α1 has order n− 1.

Proof of Theorem 4.3. We have

w :=z−1y · γ−1
n−3

=σ−1
n−2σn−3σn−1 · σ−1

n−3σ−1
n−1σ1

=σ−1
n−2σ1

∈H.

Since
a−1b = σn−3σn−4σ−1

n−2σ−1
n−1σn−2,

we have that
c := a−1b · w · b−1a = σ−1

n−1σ1.

Thus, Tα0 ∈ H and, conjugating σn−3 by Tα0 gives σi ∈ H for all 1 ≤ i ≤ n− 1.
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4.3 Periodic generation of Mod±(Σ2)

Theorem 4.6. The group Mod±(Σ2) is generated by two elements of finite order.

Proof. We have the exact sequence from Theorem 2.3:

0→ 〈ι〉 → Mod±(Σ2)
q−→ Mod±(Σ0,6)→ 0, (7)

where ι is the mapping class of a hyperelliptic involution, so that 〈ι〉 ∼= Z/2Z. Let
a, b be as in the previous theorem and let ã, b̃ be preimages to Mod±(Σ2). We claim
that ã, b̃ generate Mod±(Σ2). Let H = 〈ã, b̃〉 so that q(H) = Mod±(Σ0,6). For any
g ∈ Mod±(Σ2), we must have either g ∈ H or ιg ∈ H since these are the only two
preimages of q(g). Hence, [Mod±(Σ2) : H] ≤ 2.

Suppose that [Mod±(Σ2) : H] = 2. Then the quotient map

ϕ : Mod±(Σ2)→ Mod±(Σ2)/H ∼= Z/2Z

factors through the abelianization map

ψ : Mod±(Σ2)→ (Z/2Z)2,

say ϕ = f ◦ ψ for some f : (Z/2Z)2 → Z/2Z. Let ψ′ : Mod±(Σ0,6) → (Z/2Z)2

be the abelianization of Mod±(Σ0,6) given by ψ′(σi) = (1, 0), for 1 ≤ i ≤ n− 1, and
ψ′(T) = (0, 1). Since the hyperelliptic involution is a product of 10 Dehn twists, its
image in the abelianization is trivial (Section 5.1.3, [5]). Hence, ψ = ψ′ ◦ q. Since

ψ(ã) = ψ′(a) = (1, 1) and ψ(b̃) = ψ′(b) = (0, 1)

and
f (1, 1) = ϕ(ã) = 0 and f (0, 1) = ϕ(b̃) = 0,

we find that f = 0 and ϕ is not surjective. This gives a contradiction.
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