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Abstract

The extended mapping class group of a surface X is defined to be the group of
isotopy classes of (not necessarily orientation-preserving) homeomorphisms of >. We
are able to show that the extended mapping class group of an n-punctured sphere is
generated by two elements of finite order exactly when n # 4. We use this result to
prove that the extended mapping class group of a genus 2 surface is generated by two
elements of finite order.

1 Introduction

Let X, , be an orientable, genus ¢ surface with n punctures and let X, = ;9. We let
Mod(X,,) denote the mapping class group of ¥, i.e. isotopy classes of orientation-
preserving homeomorphisms X, — X, and let Modi(Zg,n) be the corresponding
extended mapping class group, i.e. isotopy classes of orientation-preserving or re-
versing homemorphisms ¥, , — Z¢,. Our concern in this paper will mainly be on
the groups Mod™(Z,) and Mod™(Z ;). We consider the following question:

Question 1.1. Find minimal generating sets S of Modi(Zg,n) such that each element of S is
of finite order.

1.1 Previous Work

The problem of finding generating sets, all of whose elements satisfy a given property
(e.g. finite order), is classical and has been extensively studied. In 1938, Dehn [3],
proved that Mod(%,) was generated by 2¢(g — 1) Dehn twists for ¢ > 3. Later, in
1964, Lickorish, [11], improved this to g > 1 and reduced the number of Dehn twists
needed to 3¢ — 1. This was reduced further still to 2¢ 41 in 1977 by Humpbhries,
[6], using a subset of Lickorish’s generating set. Johnson, [7], showed in 1983 that
Humphries’ generators also generate Mod(%,1) for ¢ > 1. Wajnryb showed in 1996
that Mod(Zg,n) can be generated by two elements, however, these elements are not
Dehn twists.

In regards to torsion generating sets, Maclachlan [13] showed that Mod(Xg) is
generated by a finite set of torsion elements, concluding that moduli space is simply-
connected. Luo [12] showed that Mod(Z, ) is generated by torsion elements, giving
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specific bounds for the order of generators given (g, 7). In particular, he shows that
Mod(Z,,) is generated by a involutions for ¢ > 2. Brendle and Farb [2] show that
Mod(Zg,n), for g > 1, is generated by three elements of finite order and for g > 3,n =
Oand g > 4,n = 1, Mod(Xg,) is generated by six involutions. Kassobov [8] shows
that Mod (%) can be generated by

4 involutions if g > 7 or ¢ = 7 and n is even,
5 involutions if g > 5 or ¢ = 5 and n is even,
6 involutions if ¢ > 3 or ¢ = 3 and n is even,
9 involutions if ¢ = 3 and 7 is odd.

Korkmaz shows in [9] that Mod(X,) is generated by two elements of finite order and
later showed in [10] that Mod(Zg) is generated by three involutions for ¢ > 8 and four
involutions for ¢ > 3. Yildiz [18] shows that Mod(Z,) is generated by two elements
of order g for g > 6.

However, the corresponding question about Modi(Zg,n) remains largely unan-
swered. Du showed in [4], [17] that Mod™(Z;) = GL,(Z) cannot be generated by two
elements of finite order and, for ¢ > 2, the group Modi( ¢) is generated by two ele-
ments of finite order. Later, Altunoz et. al. in [16] showed that Mod (Zg) is generated
by three involutions for ¢ > 5 and, moreover, Mod ( g,n) can be generated by three
involutions for ¢ =10,n > 60org > 11, n 2 15. In [14], Monden shows that, for ¢ > 3
and n > 0, the groups Mod(Zg,,) and Mod ( o) are generated by two elements.

The question of whether Modi(Zz) can be generated by such elements remained
open. In this paper, we answer in the affirmative. In the course of the proof, we show
that

Theorem 1.2. The group Mod Yon) can be ienemted by finite order elements for g =
On #4and g = 2,n = 0. Moreover Mod™(Xg4) cannot be generated by finite order
elements.

2 Preliminaries

2.1 Spherical Braid Group

Given any surface X, the classical braid group can be generalized to the braid group
on %, denoted B,(X) := m(Conf, (X)), where Conf,(X) is the space of unordered
configurations of n distinct points on X. In particular, we will be interested in the
spherical braid groups B, (S*). We have a surjective homomorphism B, — B, (5?) with
kernel generated by the central element R, := ¢y ...0,,-104—1...01. Then B,(S?) has
the presentation given by generators ¢, .. .,0,_1 and relations

® (~7i5']' = 5']'5'1' for |l—]| > 2

o 0,010, = 0,00, for |i — j| = 1

* R, =1

We turn our attention to the relationship between B, (S?) and Mod(%,,, ). We have
the exact sequence

0 — (B) — Bu(S?) L Mod(Zg,) — 0 (1)



where = (77 ...0,-1)" and (B) = Z/2Z (see [5], Section 9.1.4 and 9.2).
Here, we let 0; = (0;) for 1 < i < n — 1. Since we are interested in elements of
finite order, we record the following result:

Proposition 2.1. The elements of Mod(Xy,,) of finite order are conjugate to a power of one
of the following:

Element Factoring Order
X 01...041 n
o1 01...0y—2 n—1
1% o1... (7}1730'%_2 n—2

Proof. Let &; refer to the standard generators of B,(S?). Let f € Mod(%,) such that
f¥ = 1. There exists a lift f € B,(S?). Thus, f* is a power of 8 € B,(S?), from (1),
which has finite order and so f is also periodic. From [15], f must be conjugate to a
power of one of

® Ji...04-1,

® 0y...04_202 4, 0r

° F...00302 5.
Note that (07 .. .(7,1,2(757 Yl =0y 0...01is conjugate to 07 ... 0, in Mod(Z ;). To
see this, suppose X , is the unit sphere in IR? and arrange the marked points py, ..., px

in order and uniformly along the equator of the sphere. Define ¢ : ¥y, — X, by
rotating 7t radians along the axis through p, and the center of ¥ . Then,

[$] - 07+ (9] " = o1

forall1 <i < n—2. Hence, f is conjugate to a power of one of the elements in the
table. O

We will also make use of the following relations, which hold in Mod(X . 0):

aoaiaal =0jpqforl <i<n—1 (2)
oclaiocl_l =0 forl<i<n-—2 (3)
zxzaizxz’l =0 forl <i<n—3 (4)

In particular, Mod(X,,0) is generated by o7 and wo.

2.1.1 Birman-Hilden
We introduce the Birman-Hilden exact sequence for X. For details, see [1] and [5].

Theorem 2.2 (Birman-Hilden). Let 1 € Mod(X,) denote the mapping class of an involution
on Xp with 6 fixed points. There is an exact sequence

0 — (1) = Mod(Xy) — Mod(Xg6) — 0. ()

The following result will be useful in Section 4.3 to prove part of the main theorem.
It extends the Birman-Hilden exact sequence to the extended mapping class group.
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Proposition 2.3. Let 1 € Mod(X,) denote the mapping class of an involution on X, with 6
fixed points. There is an exact sequence

0 — (1) = Mod*(Z,) 5 Mod*(Zge) — 0.

Proof. Let ¢ € Mod™(X,) be orientation-reversing. Since there exists an orientation-
reversing homeomorphism T : ¥y — X, which is fiber-preserving, we may pick a
representative f : Xy — X of ¢ which is fiber-preserving: there is a representative
¢ of [T]¢ which is fiber preserving by [1] and so we may take f = T~ !og. Letting
T Xy — X denote the branched covering map, we define f : Zoe — 206 by
f=mnofon L

Suppose f and f’ are both representatives of ¢, that is, f and f’ are isotopic. Then
To fand T o f’ are orientation-preserving, isotopic and fiber-preserving. By Theorem
2.2, these maps are isotopic through fiber-preserving homemorphisms, say H : Xy x
[0,1] — X, is such an isotopy. Hence, H' = T~! o H is a fiber-preserving isotopy
between f and f'. This isotopy then descends to an isotopy between f and f’. Thus,
we have a well-defined map ¥ : Mod®(Z,) — Mod®(X) given by [f] — [f]. Since
Y |Modz,) is exactly the Birman-Hilden homomorphism from (5) and the kernel of this
map must lie in Mod(%;), we see that ker(‘¥) = (1). O

3 Periodic Elements in Modi(Zoln)

Let n > 1. For our standard model of ¥ ,, we take the unit sphere embedded in R3
along with marked points p, k =0,...,n — 1, given by

( 27k . 27wk >
px = | cos —, sin—, 0 | .
n n

Let T : Xp, — Xo, denote the map given by T(x,y,z) = (x,y, —z). We also let T
denote the isotopy class of this homeomorphism in Mod™(Zo ;). Let o}, for 1 < i <
n — 1, denote the mapping class of the right Dehn twist about the arc connecting p; to
pi+1 along the equator. Note that To; = UflT foreachl1 <i<n-—1.

We have the following presentation for Mod™ (Z,,): generators are oy, ...,0, 1,
and T with relations

e T?=(To;)>=1,for1 <i<n-—1,
* 0,0; = gjo;, for |i — j| > 2,

* oioj0; = ojoioj, for |i —j| =1,

hd (0'1 .. .U'n_l)n =1,

® 01...04-10y—-1...01 = 1

This is the presentation obtained from the isomorphism Mod™* (Z,,) = Mod (Zo,,) *
Z /27 where the non-identity element T of Z /2Z acts on Mod(Z,) by 0; — o7 L.

Recall that the orientation-preserving mapping classes of finite order are given by
Proposition 2.1. Using the presentation above, we have that

_ 1 -1
TaoT =0y ...0,°

=(o1...04-10p-1...01) -Ul’l...an’_ll



Thus, Tag is periodic with order n if n is even and order 27 if 1 is odd. We also easily
see that
(Toyos ... 00 1)* =1,

foreachk =0,...,|[n/2]. Lastly,

(T(Tn_—ll)az(TO‘n_—l ) TU 10‘0 1Un ZTU'

-1 -1
= Op-1%0041-10,, 0, 4

1 1

-1
= &o0, 10n—2

= K.

Thus, TU’ ~, and &y commute and T, 1(x2 has order n — 2 if niseven or 2(n — 2) if n
is odd.

For general n, these do not exhaust all possibilities of orientation-reversion pe-
riodic elements, even up to conjugacy. For example, when n = 9, there exists an
orientation-reversing mapping class of order 6, acting by the permutation (1234 56)(7 8 9)
on the marked points, which is not covered by any of the above examples or their
powers. However, it would be interesting to find a classification of all finite-order
elements of Mod™(Zo ;) in terms of the generators 0;.

4 Proof of Main Theorem

This section is divided into 3 subsections, each dealing with a proof of particular case
of Theorem 1.2.

41 Mod™*(Xo4) cannot be generated by two periodic elements
Theorem 4.1. The group Mod™ (£ 4) cannot be generated by two elements of finite order,

Proof. Consider the short exact sequence
0 — (—Id) = GL,(Z) 5 PGL,(Z) — 0. (6)

If A € PGLy(Z) has A¥ = Id € PGL,(Z), then for any representative A of A,
AF = +£1d so A is periodic. Suppose that PGL,(Z) is generated by two elements
A, B of finite order. Then, if A, B are representatives of A, B, then A and B generate
a subgroup H of GL,(Z). For any ¢ € GL,(Z), the only representatives of g(g) are
¢ and —g, so either ¢ € H or —g € H. Hence, the index [GLy(Z) : H| < 2. Thus,
GLy(Z)/H is abelian and [GL,(Z),GL,(Z)] < H. Note that —Id = [x, y], where

/01 qu_ (10
“\10/)™Y=0 0 1)



Thus, —Id € H. But then H = —H and so [GL(Z) : H| = 1 which contradicts the
result from [17]. Therefore, PGL,(Z) cannot be generated by two elements of finite
order. Since we have a surjection Mod* (X04) — PGLy(2Z), see Section 2.2.5 of [5], the
group Mod™ (X 4) cannot be generated by two finite order elements. O

Note that Modi(ZgA) can be generated by the three periodic elements T, Ty, and
.

4.2 Periodic generation of Mod™ (%), for n # 4

We begin with a simple observation:

Proposition 4.2. If n is odd, then Mod™* (% ) is generated by Toy and Tay.
Proof. Let H := (Toy, Tap). We have that
(Tag)" =T =T.

Therefore, T € H and so 01,49 € H. Since o7 and ay generate Mod (X, ), we have
Mod (Xg,,) < H, but since T € H \ Mod(X,), we must have that H = Modi(Zo,n).
]

This proposition shows that for odd 1, the theorem is immediate since Toy has
order 2 and Txg has order 2n. We now turn to the more difficult case.

Theorem 4.3. For all even n > 6, Modi(Zo,n) is generated by a = Un73T(x0(7;_13 and
b= TU]:jlaz.

To prove this, we proceed in a sequence of steps. Let H = (a, b). We will make use
of the following relations. Fork #n —6,n —4,n — 2,

300y 3070, 3

n
_ 2 2 1
=0Up_3&p O~y 0, 3

azaka_z = n—3“%‘7n

— -1
= On—30420, -3
= Oky2-
Lemma 4.4. We have
n—1
y:=[]ox=003...0,1 €H.
k=1
k odd
Proof. We first compute the following:
xo = b~2ab
— (a2 . -1 . -1
= (%) (%—3“‘0%—3) (Ta—nfl()Q)
— (1 -1 -1 ~1Y . -1 -1 -1
- (O—n—zo—nfllxo ) (0'”_20’”710(0 ) Tn—3 T“OUn—ST n—1%00, 192
— o1 -1_-1 -1 -1 -1
= 0, o0, 10y 0, 50y 1Ky * Oy 3| 800y, 30,100, 10,2
_ 1 -1 -
= 72%%73%%75%—4%9/—1{‘%72
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_ -1 -1
_Un—ZUn—S —503—-40p—2

= XoaXg 1

= (‘7;1112‘7;;713‘%—5‘7;1—4%72) 0y—3Teo0, 3 (nlz‘f 1‘7{715‘7;173%72)
= 0, 0,130, 50,405 - 0, _3Tagoy 5 - 0! ‘77—14‘7715‘771—3%72

= 10 30350140320y _3K00,, 30, 20,40, 50, 3 71 T

=0y 12(7 l3,(7 50340y 20y 30y 20, 10, 30, 40, 12 1T"‘0

= xla_l

_ -1 -1 -1 -1 -1
- Un720.11—30.11750.;1—40'11720'11730-1172 10330340, 20- -1 T“O'UnfBT‘XO

— g1 41 -1 _—-1|,.-1 |,.—1
= 0429 39n—-53—4931—20n—303 2031930540, 20 1| V2 V3

_ 1 -1 -1 -1 1 |1
= 0y 20, 303-500-40n—203-304 2031033054 Oy 20, 10, 2 0y 3

_ 1 1 -1 -1 | 1
= 0 203 300-500—-40n—203-30n—2 091 On—30n—a 0”10 20, "1 03

-1, -1 -1 -1 -1
= 0 20, 303505402 0y_30,_ 20y _3 (040, 50, 10, 3
1 1

1 1 -
= Un—zan—30-n750'n—40'n72‘ Op—20n—305=2 Un—4%0.n

1
Op—403—203_2 030,40, 10, 3

_ -1 -1 -1 -1
- Un—SUn 20 -3 O—n—ZO—n—ZO—n74 Un—3an (7 10 -3
=0, 0 Lo Lo .o O, 40, a0, o1 o1

= 05020 ~30n-20n-2 Ou—4%1-3%—4 {7103
_ -1 -1

= 0y—50, 20 300205 ‘ 1-30n-49w=3 (0 1/

— -1 -1 -1
= On—503-291 391202939491

_[ -
=0, 120,250 5

= be_l

_ -1 1 —1 —1
_O-n—SO-n720-11730}1—20}1—20-71—30-11740-11—1 Un 20— 1T

_ -1 -1 -1 1 —1
= 0503 203 3002020330340, 10y 50y 1| T2ty |T

_ -1 -1 -1 -1
=0y 50, > U 30.n 204203 30340, n—1 0,204,102 ‘XO T

— -1 -1 - -1 |1
=0, 50, 0, 30, 2(7”_20"_3Un,4% Ty A0y 20, g T
— -1 -1 -1 -1

= 0503 20, 3002032033 On—40n—2 (O 1% T

_ -1 -1 o o o 1 T

_ -1 -1 17

= 050y 50, 30y o[ Oy 200 30,2 [0u—40, 10y

_ -1 -1 —1

= 0450, 20, 304203032053 040y 1“0 T




— -1 -1 ~1 -1
= 0,50, 20y, 3 Oy _20y_30,_2 030,40, 1&g T
= n_s%f%ﬂ%%%_s

_ 1 -1
= 0y_504-30,_30,_40, 1&g T

-1 -1
O30, 40, 10y T

X4 = X34

— 1 -1
= Up—504-30,—30_40, 1| &g T-0, 3Tao |, 3

= n—5(7n—3%%(7n_31 T4 |93

_ -1
- n—SU—n—SU—nfl

. L -1 .
Define vy := 0,0, ,0,, where subscripts are taken modulo 7. Also,

2k 2k

aZk'yla’ =a 010305’1a’2k

2% 1k
a™ 02k 110243051 54

= Y2k+1

for all odd k. The above computations show that 7,5 € H. Hence, 7, € H for all odd
k. Thus,

Yy="173--Tn-1
== (71(73 PP Orn_30—n71
€ H.

One can see this by noting that each pair of the ¢;’s which appear in y commute
and hence, the right-hand side can be obtained by adding exponents for each ¢; which
appears. O

Lemma 4.5. We have

n—>5

Z .= n—>o | | (Tk = 0103 . ‘UH—SUH—Z S H.
k=1
k odd

Proof. We start with

_ -1 —1 —1
ab =0, 3Taoo, 5 To, 000, 10, >

— -1 -1
— 0')’173“00'71730'1171“00'71710'1172
= (“0%_1) Un—503-40n—2

Let Ay := 0,0, 10,5 forl1 <k <n-—>5. Then,

12 12
(Oéoa'n_1> Ay = Agio (060(7,1_1)



forl1<k<n-—7and

ab = (DC()(T.’Hl) An_5
= 1 ago Lo o 0
= &00, 1400, 103—50n—40y—2
o2 1 1
=00, 20, 10450402
_ 2 11
= 0005040, 20, 1042

_ 2 11
= 03302000410, 20,

= 11730'11720'1 (0(0(7”71> .

A A3As5 ... Ny 5 = 010,04 - 030404 - 050608« - - Oy 703 _60p—4 - Op—505 40,2
= 010203 + 040305 * 060507 - - . Oy 60y—70 -5 " 04035002
=010y...0,_40305...0,_50,_>
= 000, 110, 50, 15 0305 - - 050,
= w00, 40, 0, 5 oy

Therefore,
R [ S Y (S SR (s

-1 2 -1 2 -1 2
= |0,_30,,_»>0q (“00—;1,1) '(“0 n71> An_5... (ao n71> An_5

n—2
1
= 030,201 <0¢0(Tn_1> A A3As5 ... Ay—7My 5

n—2
_ -1 1 -1 -1 1
= n—3Un—201|:<“0 n71> “O‘Tnl]%—z%—:s 0y 2
_ 11 1

= 0p3042010, 50, 301 Z

:Z,

where we use the fact that Dé()O'}:_ll = nq has order n — 1.
Proof of Theorem 4.3. We have

1 -1

W=z Y- Y, 3
_ 1 -1 -1
=0, 20y 30,10, 30, 1071

_ -1
=0, 701

€H.

Since
1y _ -1 -1
a b= O—n730—n—40—n720—n—10—n* 4

we have that

-1

ci=a'b-w-bla=0 407

n

Thus, Tay € H and, conjugating 0,,_3 by Tag gives0; € H foralll <i <n—1.
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4.3 Periodic generation of Mod™ (%;)
Theorem 4.6. The group Mod™*(X,) is generated by two elements of finite order.

Proof. We have the exact sequence from Theorem 2.3:
0 — (1) = Mod™(Z,) & Mod* (Zg6) — 0, 7)

where ¢ is the mapping class of a hyperelliptic involution, so that (1) = Z/2Z. Let
a,b be as in the prev1ous theorem and let &, b be preimages to Mod™*(X;). We claim
that 4,b generate Mod™(X,). Let H = (4,b) so that g(H) = Mod™(Xs). For any
g € Modi(Zz), we must have either ¢ € H or 1g € H since these are the only two
preimages of g(g). Hence, [Mod™(X,) : H] < 2.

Suppose that [Mod* (X,) : H] = 2. Then the quotient map

¢ : Mod™* (%) — Mod™* (%,)/H = Z/2Z
factors through the abelianization map
¥ : Mod™ (%) — (Z/2Z)?,

say ¢ = fo for some f : (Z/27Z)* — Z/2Z. Let ¢/ : Mod™(Xo6) — (Z/2Z)>
be the abelianization of Mod™ (Zg) given by ¢'(0;) = (1,0), for 1 < i < n — 1, and
¢'(T) = (0,1). Since the hyperelliptic involution is a product of 10 Dehn twists, its
image in the abelianization is trivial (Section 5.1.3, [5]). Hence, ¢ = ¢’ o q. Since

$(a) = ¢'(a) = (1,1) and g(b) = ¢'(b) = (0,1)
and
f(1,1) = ¢(a) = 0and £(0,1) = (F) = 0,

we find that f = 0 and ¢ is not surjective. This gives a contradiction.

References

[1] J. Birman and H. Hilden. On isotopies of homeomorphisms of riemann surfaces.
The Annals of Mathematics, 97(3):424-439, 1973.

[2] T. E. Brendle and B. Farb. Every mapping class group is generated by 6 involu-
tions. Journal of Algebra, 278(1):187-198, 2004.

[3] M. Dehn. Die gruppe der abbildungsklassen. Acta Mathematica, 69:135-206, 1938.

[4] X. Du. The extended mapping class group can be generated by two torsions.
Journal of Knot Theory and Its Ramifications, 26(11):1750061, 2017.

[5] X. Du. The torsion generating set of the extended mapping class groups in low
genus cases. Osaka Journal of Mathematics, 58(4):815-825, 2021.

[6] B. Farb and D. Margalit. A primer on mapping class groups (pms-49), volume 41.
Princeton university press, 2011.

10



[7] S. P. Humphries. Generators for the mapping class group. In Topology of Low-
Dimensional Manifolds: Proceedings of the Second Sussex Conference, 1977, pages 44—
47. Springer, 2006.

[8] D. Johnson. The structure of the torelli group i: a finite set of generators for j.
Annals of Mathematics, 118(3):423-442, 1983.

[9] M. Kassabov. Generating mapping class groups by involutions. arXiv preprint
math/0311455, 2003.

[10] M. Korkmaz. Generating the surface mapping class group by two elements.
Transactions of the American Mathematical Society, 357(8):3299-3310, 2005.

[11] M. Korkmaz. Mapping class group is generated by three involutions. Mathemat-
ical Research Letters, 27(4):1095-1108, 2020.

[12] W. B. Lickorish. A finite set of generators for the homeotopy group of a 2-
manifold. In Mathematical Proceedings of the Cambridge Philosophical Society, vol-
ume 60, pages 769-778. Cambridge University Press, 1964.

[13] F. Luo. Torsion elements in the mapping class group of a surface. arXiv preprint
math/0004048, 2000.

[14] C. Maclachlan. Modulus space is simply-connected. Proceedings of the American
Mathematical Society, 29(1):85-86, 1971.

[15] N. Monden. On minimal generating sets for the mapping class group of a punc-
tured surface. Israel Journal of Mathematics, pages 1-23, 2024.

[16] K. Murasugi. Seifert fibre spaces and braid groups. Proceedings of the London
Mathematical Society, s3-44(1):71-84, 1982.

[17] A. Tilin, M. Pamuk, and O. Yildiz. Generating the extended mapping class
group by three involutions. Osaka J. Math., 60(1):61-75, January 2023.

[18] O. Yildiz. Generating the mapping class group by two torsion elements. Mediter-
ranean Journal of Mathematics, 19(2):59, 2022.

11



