Generating Extended Mapping Class Groups with Two Periodic Elements

Reid Harris

September 9, 2024

Abstract

The extended mapping class group of a surface Σ is defined to be the group of isotopy classes of (not necessarily orientation-preserving) homeomorphisms of Σ . We are able to show that the extended mapping class group of an *n*-punctured sphere is generated by two elements of finite order exactly when $n \neq 4$. We use this result to prove that the extended mapping class group of a genus 2 surface is generated by two elements of finite order.

1 Introduction

Let $\Sigma_{g,n}$ be an orientable, genus g surface with n punctures and let $\Sigma_g = \Sigma_{g,0}$. We let $Mod(\Sigma_{g,n})$ denote the mapping class group of $\Sigma_{g,n}$, i.e. isotopy classes of orientation-preserving homeomorphisms $\Sigma_{g,n} \to \Sigma_{g,n}$, and let $Mod^{\pm}(\Sigma_{g,n})$ be the corresponding extended mapping class group, i.e. isotopy classes of orientation-preserving or reversing homemorphisms $\Sigma_{g,n} \to \Sigma_{g,n}$. Our concern in this paper will mainly be on the groups $Mod^{\pm}(\Sigma_2)$ and $Mod^{\pm}(\Sigma_{0,n})$. We consider the following question:

Question 1.1. *Find minimal generating sets S of* $Mod^{\pm}(\Sigma_{g,n})$ *such that each element of S is of finite order.*

1.1 Previous Work

The problem of finding generating sets, all of whose elements satisfy a given property (e.g. finite order), is classical and has been extensively studied. In 1938, Dehn [3], proved that $Mod(\Sigma_{g,0})$ was generated by 2g(g-1) Dehn twists for $g \ge 3$. Later, in 1964, Lickorish, [11], improved this to $g \ge 1$ and reduced the number of Dehn twists needed to 3g - 1. This was reduced further still to 2g + 1 in 1977 by Humphries, [6], using a subset of Lickorish's generating set. Johnson, [7], showed in 1983 that Humphries' generators also generate $Mod(\Sigma_{g,1})$ for $g \ge 1$. Wajnryb showed in 1996 that $Mod(\Sigma_{g,n})$ can be generated by two elements, however, these elements are not Dehn twists.

In regards to torsion generating sets, Maclachlan [13] showed that $Mod(\Sigma_g)$ is generated by a finite set of torsion elements, concluding that moduli space is simply-connected. Luo [12] showed that $Mod(\Sigma_{g,n})$ is generated by torsion elements, giving

specific bounds for the order of generators given (g, n). In particular, he shows that $Mod(\Sigma_{g,n})$ is generated by a involutions for $g \ge 2$. Brendle and Farb [2] show that $Mod(\Sigma_{g,n})$, for $g \ge 1$, is generated by three elements of finite order and for $g \ge 3$, n = 0 and $g \ge 4$, n = 1, $Mod(\Sigma_{g,n})$ is generated by six involutions. Kassobov [8] shows that $Mod(\Sigma_{g,n})$ can be generated by

4 involutions if g > 7 or g = 7 and n is even, 5 involutions if g > 5 or g = 5 and n is even, 6 involutions if g > 3 or g = 3 and n is even, 9 involutions if g = 3 and n is odd.

Korkmaz shows in [9] that $Mod(\Sigma_g)$ is generated by two elements of finite order and later showed in [10] that $Mod(\Sigma_g)$ is generated by three involutions for $g \ge 8$ and four involutions for $g \ge 3$. Yildiz [18] shows that $Mod(\Sigma_g)$ is generated by two elements of order g for $g \ge 6$.

However, the corresponding question about $\operatorname{Mod}^{\pm}(\Sigma_{g,n})$ remains largely unanswered. Du showed in [4], [17] that $\operatorname{Mod}^{\pm}(\Sigma_1) \cong \operatorname{GL}_2(\mathbb{Z})$ cannot be generated by two elements of finite order and, for g > 2, the group $\operatorname{Mod}^{\pm}(\Sigma_g)$ is generated by two elements of finite order. Later, Altunöz et. al. in [16] showed that $\operatorname{Mod}^{\pm}(\Sigma_g)$ is generated by three involutions for $g \ge 5$ and, moreover, $\operatorname{Mod}^{\pm}(\Sigma_{g,n})$ can be generated by three involutions for g = 10, $n \ge 6$ or $g \ge 11$, $n \ge 15$. In [14], Monden shows that, for $g \ge 3$ and $n \ge 0$, the groups $\operatorname{Mod}(\Sigma_{g,n})$ and $\operatorname{Mod}^{\pm}(\Sigma_{g,n})$ are generated by two elements.

The question of whether $Mod^{\pm}(\Sigma_2)$ can be generated by such elements remained open. In this paper, we answer in the affirmative. In the course of the proof, we show that

Theorem 1.2. The group $\operatorname{Mod}^{\pm}(\Sigma_{g,n})$ can be generated by finite order elements for $g = 0, n \neq 4$ and g = 2, n = 0. Moreover, $\operatorname{Mod}^{\pm}(\Sigma_{0,4})$ cannot be generated by finite order elements.

2 Preliminaries

2.1 Spherical Braid Group

Given any surface Σ , the classical braid group can be generalized to the *braid group* on Σ , denoted $B_n(\Sigma) := \pi_1(\text{Conf}_n(\Sigma))$, where $\text{Conf}_n(\Sigma)$ is the space of unordered configurations of *n* distinct points on Σ . In particular, we will be interested in the *spherical braid groups* $B_n(S^2)$. We have a surjective homomorphism $B_n \to B_n(S^2)$ with kernel generated by the central element $R_n := \sigma_1 \dots \sigma_{n-1} \sigma_{n-1} \dots \sigma_1$. Then $B_n(S^2)$ has the presentation given by generators $\tilde{\sigma}_1, \dots, \tilde{\sigma}_{n-1}$ and relations

- $\tilde{\sigma}_i \tilde{\sigma}_j = \tilde{\sigma}_j \tilde{\sigma}_i$ for |i j| > 2
- $\tilde{\sigma}_i \tilde{\sigma}_j \tilde{\sigma}_i = \tilde{\sigma}_j \tilde{\sigma}_i \tilde{\sigma}_j$ for |i j| = 1
- $R_n = 1$.

We turn our attention to the relationship between $B_n(S^2)$ and $Mod(\Sigma_{0,n})$. We have the exact sequence

$$0 \to \langle \beta \rangle \to B_n(S^2) \xrightarrow{\psi} \operatorname{Mod}(\Sigma_{0,n}) \to 0 \tag{1}$$

where $\beta = (\tilde{\sigma}_1 \dots \tilde{\sigma}_{n-1})^n$ and $\langle \beta \rangle \cong \mathbb{Z}/2\mathbb{Z}$ (see [5], Section 9.1.4 and 9.2).

Here, we let $\sigma_i = \psi(\tilde{\sigma}_i)$ for $1 \le i \le n-1$. Since we are interested in elements of finite order, we record the following result:

Proposition 2.1. The elements of $Mod(\Sigma_{0,n})$ of finite order are conjugate to a power of one of the following:

Element	Factoring	Order
α_0	$\sigma_1 \ldots \sigma_{n-1}$	п
α1	$\sigma_1 \ldots \sigma_{n-2}$	<i>n</i> – 1
α2	$\sigma_1 \ldots \sigma_{n-3} \sigma_{n-2}^2$	<i>n</i> – 2

Proof. Let $\tilde{\sigma}_i$ refer to the standard generators of $B_n(S^2)$. Let $f \in Mod(\Sigma_{0,n})$ such that $f^k = 1$. There exists a lift $\tilde{f} \in B_n(S^2)$. Thus, \tilde{f}^k is a power of $\beta \in B_n(S^2)$, from (1), which has finite order and so \tilde{f} is also periodic. From [15], \tilde{f} must be conjugate to a power of one of

- $\tilde{\sigma}_1 \dots \tilde{\sigma}_{n-1}$, $\tilde{\sigma}_1 \dots \tilde{\sigma}_{n-2} \tilde{\sigma}_{n-1}^2$, or $\tilde{\sigma}_1 \dots \tilde{\sigma}_{n-3} \tilde{\sigma}_{n-2}^2$.

Note that $(\sigma_1 \dots \sigma_{n-2} \sigma_{n-1}^2)^{-1} = \sigma_{n-2} \dots \sigma_1$ is conjugate to $\sigma_1 \dots \sigma_{n-2}$ in $Mod(\Sigma_{0,n})$. To see this, suppose $\Sigma_{0,n}$ is the unit sphere in \mathbb{R}^3 and arrange the marked points p_1, \ldots, p_n in order and uniformly along the equator of the sphere. Define $\phi : \Sigma_{0,n} \to \Sigma_{0,n}$ by rotating π radians along the axis through p_n and the center of $\Sigma_{0,n}$. Then,

$$[\phi] \cdot \sigma_i \cdot [\phi]^{-1} = \sigma_{n-1-i}$$

for all $1 \le i \le n-2$. Hence, *f* is conjugate to a power of one of the elements in the table.

We will also make use of the following relations, which hold in $Mod(\Sigma_{0,n,0})$:

$$\alpha_0 \sigma_i \alpha_0^{-1} = \sigma_{i+1} \text{ for } 1 \le i < n-1 \tag{2}$$

$$\alpha_1 \sigma_i \alpha_1^{-1} = \sigma_{i+1} \text{ for } 1 \le i < n-2$$
 (3)

$$\alpha_2 \sigma_i \alpha_2^{-1} = \sigma_{i+1} \text{ for } 1 \le i < n-3 \tag{4}$$

In particular, $Mod(\Sigma_{0,n,0})$ is generated by σ_1 and α_0 .

Birman-Hilden 2.1.1

We introduce the Birman-Hilden exact sequence for Σ_2 . For details, see [1] and [5].

Theorem 2.2 (Birman-Hilden). Let $\iota \in Mod(\Sigma_2)$ denote the mapping class of an involution on Σ_2 with 6 fixed points. There is an exact sequence

$$0 \to \langle \iota \rangle \to \operatorname{Mod}(\Sigma_2) \to \operatorname{Mod}(\Sigma_{0,6}) \to 0.$$
(5)

The following result will be useful in Section 4.3 to prove part of the main theorem. It extends the Birman-Hilden exact sequence to the extended mapping class group.

Proposition 2.3. Let $\iota \in Mod(\Sigma_2)$ denote the mapping class of an involution on Σ_2 with 6 fixed points. There is an exact sequence

$$0 \to \langle \iota \rangle \to \operatorname{Mod}^{\pm}(\Sigma_2) \xrightarrow{\Psi} \operatorname{Mod}^{\pm}(\Sigma_{0,6}) \to 0.$$

Proof. Let $\phi \in \text{Mod}^{\pm}(\Sigma_2)$ be orientation-reversing. Since there exists an orientation-reversing homeomorphism $T : \Sigma_2 \to \Sigma_2$ which is fiber-preserving, we may pick a representative $f : \Sigma_2 \to \Sigma_2$ of ϕ which is fiber-preserving: there is a representative g of $[T]\phi$ which is fiber preserving by [1] and so we may take $f = T^{-1} \circ g$. Letting $\pi : \Sigma_2 \to \Sigma_{0,6}$ denote the branched covering map, we define $\overline{f} : \Sigma_{0,6} \to \Sigma_{0,6}$ by $\overline{f} = \pi \circ f \circ \pi^{-1}$.

Suppose f and f' are both representatives of ϕ , that is, f and f' are isotopic. Then $T \circ f$ and $T \circ f'$ are orientation-preserving, isotopic and fiber-preserving. By Theorem 2.2, these maps are isotopic through fiber-preserving homemorphisms, say $H : \Sigma_2 \times [0,1] \to \Sigma_2$ is such an isotopy. Hence, $H' = T^{-1} \circ H$ is a fiber-preserving isotopy between f and f'. This isotopy then descends to an isotopy between \bar{f} and \bar{f}' . Thus, we have a well-defined map $\Psi : \operatorname{Mod}^{\pm}(\Sigma_2) \to \operatorname{Mod}^{\pm}(\Sigma_{0,6})$ given by $[f] \mapsto [\bar{f}]$. Since $\Psi|_{\operatorname{Mod}\Sigma_2)}$ is exactly the Birman-Hilden homomorphism from (5) and the kernel of this map must lie in $\operatorname{Mod}(\Sigma_2)$, we see that $\ker(\Psi) = \langle \iota \rangle$.

3 Periodic Elements in $Mod^{\pm}(\Sigma_{0,n})$

Let $n \ge 1$. For our standard model of $\Sigma_{0,n}$, we take the unit sphere embedded in \mathbb{R}^3 along with marked points p_k , k = 0, ..., n - 1, given by

$$p_k = \left(\cos\frac{2\pi k}{n}, \sin\frac{2\pi k}{n}, 0\right).$$

Let $T : \Sigma_{0,n} \to \Sigma_{0,n}$ denote the map given by T(x, y, z) = (x, y, -z). We also let T denote the isotopy class of this homeomorphism in $\text{Mod}^{\pm}(\Sigma_{0,n})$. Let σ_i , for $1 \le i \le n-1$, denote the mapping class of the right Dehn twist about the arc connecting p_i to p_{i+1} along the equator. Note that $T\sigma_i = \sigma_i^{-1}T$ for each $1 \le i \le n-1$.

We have the following presentation for $Mod^{\pm}(\Sigma_{0,n})$: generators are $\sigma_1, \ldots, \sigma_{n-1}$, and *T* with relations

- $T^2 = (T\sigma_i)^2 = 1$, for $1 \le i \le n 1$,
- $\sigma_i \sigma_j = \sigma_j \sigma_i$, for $|i j| \ge 2$,
- $\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j$, for |i j| = 1,
- $(\sigma_1 \ldots \sigma_{n-1})^n = 1$,
- $\sigma_1 \ldots \sigma_{n-1} \sigma_{n-1} \ldots \sigma_1 = 1$

This is the presentation obtained from the isomorphism $Mod^{\pm}(\Sigma_{0,n}) \cong Mod(\Sigma_{0,n}) \rtimes \mathbb{Z}/2\mathbb{Z}$ where the non-identity element *T* of $\mathbb{Z}/2\mathbb{Z}$ acts on $Mod(\Sigma_{0,n})$ by $\sigma_i \mapsto \sigma_i^{-1}$.

Recall that the orientation-preserving mapping classes of finite order are given by Proposition 2.1. Using the presentation above, we have that

$$T\alpha_0 T = \sigma_1^{-1} \dots \sigma_{n-1}^{-1}$$

= $(\sigma_1 \dots \sigma_{n-1} \sigma_{n-1} \dots \sigma_1) \cdot \sigma_1^{-1} \dots \sigma_{n-1}^{-1}$

$$= \sigma_1 \dots \sigma_{n-1}$$
$$= \alpha_0.$$

Thus, $T\alpha_0$ is periodic with order *n* if *n* is even and order 2n if *n* is odd. We also easily see that

$$(T\sigma_1\sigma_3\ldots\sigma_{2k-1})^2=1$$

for each $k = 0, \ldots, \lfloor n/2 \rfloor$. Lastly,

$$(T\sigma_{n-1}^{-1})\alpha_2(T\sigma_{n-1}^{-1}) = T\sigma_{n-1}^{-1}\alpha_0\sigma_{n-1}^{-1}\sigma_{n-2}T\sigma_{n-1}^{-1}$$

= $\sigma_{n-1}\alpha_0\sigma_{n-1}\sigma_{n-2}^{-1}\sigma_{n-1}^{-1}$
= $\alpha_0\sigma_{n-2}\sigma_{n-1}\sigma_{n-2}^{-1}\sigma_{n-1}^{-1}$
= $\alpha_0\sigma_{n-1}^{-1}\sigma_{n-2}$
= $\alpha_2.$

Thus, $T\sigma_{n-1}^{-1}$ and α_2 commute and $T\sigma_{n-1}^{-1}\alpha_2$ has order n-2 if n is even or 2(n-2) if n is odd.

For general *n*, these do not exhaust all possibilities of orientation-reversion periodic elements, even up to conjugacy. For example, when n = 9, there exists an orientation-reversing mapping class of order 6, acting by the permutation $(1\ 2\ 3\ 4\ 5\ 6)(7\ 8\ 9)$ on the marked points, which is not covered by any of the above examples or their powers. However, it would be interesting to find a classification of all finite-order elements of Mod[±]($\Sigma_{0,n}$) in terms of the generators σ_i .

4 **Proof of Main Theorem**

This section is divided into 3 subsections, each dealing with a proof of particular case of Theorem 1.2.

4.1 $\operatorname{Mod}^{\pm}(\Sigma_{0,4})$ cannot be generated by two periodic elements

Theorem 4.1. The group $Mod^{\pm}(\Sigma_{0,4})$ cannot be generated by two elements of finite order.

Proof. Consider the short exact sequence

$$0 \to \langle -\mathrm{Id} \rangle \to \mathrm{GL}_2(\mathbb{Z}) \xrightarrow{q} \mathrm{PGL}_2(\mathbb{Z}) \to 0.$$
(6)

If $\overline{A} \in PGL_2(\mathbb{Z})$ has $\overline{A}^k = Id \in PGL_2(\mathbb{Z})$, then for any representative A of \overline{A} , $A^k = \pm Id$ so A is periodic. Suppose that $PGL_2(\mathbb{Z})$ is generated by two elements $\overline{A}, \overline{B}$ of finite order. Then, if A, B are representatives of $\overline{A}, \overline{B}$, then A and B generate a subgroup H of $GL_2(\mathbb{Z})$. For any $g \in GL_2(\mathbb{Z})$, the only representatives of q(g) are g and -g, so either $g \in H$ or $-g \in H$. Hence, the index $[GL_2(\mathbb{Z}) : H] \leq 2$. Thus, $GL_2(\mathbb{Z})/H$ is abelian and $[GL_2(\mathbb{Z}), GL_2(\mathbb{Z})] \leq H$. Note that -Id = [x, y], where

$$x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 and $y = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$.

Thus, $-\text{Id} \in H$. But then H = -H and so $[\text{GL}_2(\mathbb{Z}) : H] = 1$ which contradicts the result from [17]. Therefore, $\text{PGL}_2(\mathbb{Z})$ cannot be generated by two elements of finite order. Since we have a surjection $\text{Mod}^{\pm}(\Sigma_{0,4}) \to \text{PGL}_2(\mathbb{Z})$, see Section 2.2.5 of [5], the group $\text{Mod}^{\pm}(\Sigma_{0,4})$ cannot be generated by two finite order elements. \Box

Note that $Mod^{\pm}(\Sigma_{0,4})$ can be generated by the three periodic elements *T*, $T\sigma_1$, and α_0 .

4.2 Periodic generation of $Mod^{\pm}(\Sigma_{0,n})$, for $n \neq 4$

We begin with a simple observation:

Proposition 4.2. If *n* is odd, then $Mod^{\pm}(\Sigma_{0,n})$ is generated by $T\sigma_1$ and $T\alpha_0$.

Proof. Let $H := \langle T\sigma_1, T\alpha_0 \rangle$. We have that

$$(T\alpha_0)^n = T^n \alpha_0^n = T$$

Therefore, $T \in H$ and so $\sigma_1, \alpha_0 \in H$. Since σ_1 and α_0 generate $Mod(\Sigma_{0,n})$, we have $Mod(\Sigma_{0,n}) \leq H$, but since $T \in H \setminus Mod(\Sigma_{0,n})$, we must have that $H = Mod^{\pm}(\Sigma_{0,n})$.

This proposition shows that for odd *n*, the theorem is immediate since $T\sigma_1$ has order 2 and $T\alpha_0$ has order 2*n*. We now turn to the more difficult case.

Theorem 4.3. For all even $n \ge 6$, $\operatorname{Mod}^{\pm}(\Sigma_{0,n})$ is generated by $a = \sigma_{n-3}T\alpha_0\sigma_{n-3}^{-1}$ and $b = T\sigma_{n-1}^{-1}\alpha_2$.

To prove this, we proceed in a sequence of steps. Let $H = \langle a, b \rangle$. We will make use of the following relations. For $k \neq n - 6, n - 4, n - 2$,

$$a^{2}\sigma_{k}a^{-2} = \sigma_{n-3}\alpha_{0}^{2}\sigma_{n-3}^{-1} \cdot \sigma_{k} \cdot \sigma_{n-3}\alpha_{0}^{-2}\sigma_{n-3}^{-1}$$

= $\sigma_{n-3}\alpha_{0}^{2} \cdot \sigma_{k} \cdot \alpha_{0}^{-2}\sigma_{n-3}^{-1}$
= $\sigma_{n-3}\sigma_{k+2}\sigma_{n-3}^{-1}$
= σ_{k+2} .

Lemma 4.4. We have

$$y:=\prod_{\substack{k=1\\k \text{ odd}}}^{n-1}\sigma_k=\sigma_1\sigma_3\ldots\sigma_{n-1}\in H.$$

Proof. We first compute the following:

$$\begin{aligned} x_0 &= b^{-2}ab \\ &= (\alpha_2^{-2}) \cdot \left(\sigma_{n-3}T\alpha_0\sigma_{n-3}^{-1}\right) \cdot \left(T\sigma_{n-1}^{-1}\alpha_2\right) \\ &= \left(\sigma_{n-2}^{-1}\sigma_{n-1}\alpha_0^{-1}\right) \left(\sigma_{n-2}^{-1}\sigma_{n-1}\alpha_0^{-1}\right) \cdot \sigma_{n-3} \overline{T\alpha_0\sigma_{n-3}^{-1}T}\sigma_{n-1}^{-1}\alpha_0\sigma_{n-1}^{-1}\sigma_{n-2} \\ &= \sigma_{n-2}^{-1}\sigma_{n-1}\alpha_0^{-1}\sigma_{n-2}^{-1}\sigma_{n-1}\alpha_0^{-1} \cdot \sigma_{n-3} \overline{\alpha_0\sigma_{n-3}}\sigma_{n-1}^{-1}\alpha_0\sigma_{n-1}^{-1}\sigma_{n-2} \\ &= \sigma_{n-2}^{-1}\sigma_{n-1}\sigma_{n-3}\sigma_{n-2}\sigma_{n-5}\sigma_{n-4}\sigma_{n-2}^{-1}\sigma_{n-2}^{-1}\sigma_{n-2} \end{aligned}$$

$$=\sigma_{n-2}^{-1}\sigma_{n-3}^{-1}\sigma_{n-5}\sigma_{n-4}\sigma_{n-2}$$

$$\begin{aligned} x_1 &= x_0 a x_0^{-1} \\ &= \left(\sigma_{n-2}^{-1} \sigma_{n-3}^{-1} \sigma_{n-5} \sigma_{n-4} \sigma_{n-2}\right) \cdot \sigma_{n-3} T \alpha_0 \sigma_{n-3}^{-1} \cdot \left(\sigma_{n-2}^{-1} \sigma_{n-4}^{-1} \sigma_{n-5}^{-1} \sigma_{n-3} \sigma_{n-2}\right) \\ &= \sigma_{n-2}^{-1} \sigma_{n-3}^{-1} \sigma_{n-5} \sigma_{n-4} \sigma_{n-2} \cdot \sigma_{n-3} T \alpha_0 \sigma_{n-3}^{-1} \cdot \sigma_{n-2}^{-1} \sigma_{n-4}^{-1} \sigma_{n-5}^{-1} \sigma_{n-3} \sigma_{n-2} \\ &= \sigma_{n-2}^{-1} \sigma_{n-3}^{-1} \sigma_{n-5} \sigma_{n-4} \sigma_{n-2} \sigma_{n-3} \alpha_0 \sigma_{n-3} \sigma_{n-2} \sigma_{n-4} \sigma_{n-5} \sigma_{n-3}^{-1} \sigma_{n-2}^{-1} T \\ &= \sigma_{n-2}^{-1} \sigma_{n-3}^{-1} \sigma_{n-5} \sigma_{n-4} \sigma_{n-2} \sigma_{n-3} \sigma_{n-2} \sigma_{n-4} \sigma_{n-2} \sigma_{n-1}^{-1} \sigma_{n-3} \sigma_{n-4} \sigma_{n-2}^{-1} T \alpha_0 \end{aligned}$$

$$\begin{aligned} x_2 &= x_1 a^{-1} \\ &= \sigma_{n-2}^{-1} \sigma_{n-3}^{-1} \sigma_{n-5} \sigma_{n-4} \sigma_{n-2} \sigma_{n-3} \sigma_{n-2} \sigma_{n-1} \sigma_{n-3} \sigma_{n-4} \sigma_{n-2}^{-1} \sigma_{n-1}^{-1} \boxed{T \alpha_0 \cdot \sigma_{n-3} T \alpha_0^{-1}} \sigma_{n-3}^{-1} \\ &= \sigma_{n-2}^{-1} \sigma_{n-3}^{-1} \sigma_{n-5} \sigma_{n-4} \sigma_{n-2} \sigma_{n-3} \sigma_{n-2} \sigma_{n-1} \sigma_{n-3} \sigma_{n-4} \sigma_{n-2}^{-1} \sigma_{n-1}^{-1} \sigma_{n-3}^{-1} \\ &= \sigma_{n-2}^{-1} \sigma_{n-3}^{-1} \sigma_{n-5} \sigma_{n-4} \sigma_{n-2} \sigma_{n-3} \sigma_{n-2} \sigma_{n-1} \sigma_{n-3} \sigma_{n-4} \boxed{\sigma_{n-2}^{-1} \sigma_{n-1}^{-1} \sigma_{n-2}^{-1}} \sigma_{n-3}^{-1} \\ &= \sigma_{n-2}^{-1} \sigma_{n-3}^{-1} \sigma_{n-5} \sigma_{n-4} \sigma_{n-2} \sigma_{n-2} \sigma_{n-4} \sigma_{n-3} \sigma_{n-4} \boxed{\sigma_{n-2}^{-1} \sigma_{n-1}^{-1} \sigma_{n-3}^{-1}} \\ &= \sigma_{n-2}^{-1} \sigma_{n-3}^{-1} \sigma_{n-5} \sigma_{n-4} \sigma_{n-2} \boxed{\sigma_{n-3} \sigma_{n-2} \sigma_{n-3}} \sigma_{n-4} \sigma_{n-2}^{-1} \sigma_{n-1}^{-1} \sigma_{n-3}^{-1} \\ &= \sigma_{n-2}^{-1} \sigma_{n-3}^{-1} \sigma_{n-5} \sigma_{n-4} \sigma_{n-2} \boxed{\sigma_{n-2} \sigma_{n-3} \sigma_{n-4} \sigma_{n-1}^{-1} \sigma_{n-3}^{-1}} \\ &= \boxed{\sigma_{n-2}^{-1} \sigma_{n-3}^{-1} \sigma_{n-5} \sigma_{n-4} \sigma_{n-2} \sigma_{n-2} \sigma_{n-3} \sigma_{n-4} \sigma_{n-1}^{-1} \sigma_{n-3}^{-1}} \\ &= \boxed{\sigma_{n-2}^{-1} \sigma_{n-3}^{-1} \sigma_{n-2} \sigma_{n-2} \sigma_{n-2} \sigma_{n-4} \sigma_{n-3} \sigma_{n-4} \sigma_{n-1}^{-1} \sigma_{n-3}^{-1}} \\ &= \boxed{\sigma_{n-5} \sigma_{n-2}^{-1} \sigma_{n-3}^{-1} \sigma_{n-2} \sigma_{n-2} \sigma_{n-4} \sigma_{n-3} \sigma_{n-4} \sigma_{n-1}^{-1} \sigma_{n-3}^{-1}} \\ &= \sigma_{n-5} \sigma_{n-2}^{-1} \sigma_{n-3}^{-1} \sigma_{n-2} \sigma_{n-2} \overline{\sigma_{n-4} \sigma_{n-3} \sigma_{n-4} \sigma_{n-1}^{-1} \sigma_{n-3}^{-1}} \\ &= \sigma_{n-5} \sigma_{n-2}^{-1} \sigma_{n-3}^{-1} \sigma_{n-2} \sigma_{n-2} \overline{\sigma_{n-4} \sigma_{n-3} \sigma_{n-4} \sigma_{n-1}^{-1} \sigma_{n-3}^{-1}} \\ &= \sigma_{n-5} \sigma_{n-2}^{-1} \sigma_{n-3}^{-1} \sigma_{n-2} \sigma_{n-2} \overline{\sigma_{n-4} \sigma_{n-3} \sigma_{n-4} \sigma_{n-1}^{-1} \sigma_{n-3}^{-1}} \\ &= \sigma_{n-5} \sigma_{n-2}^{-1} \sigma_{n-3}^{-1} \sigma_{n-2} \sigma_{n-2} \overline{\sigma_{n-4} \sigma_{n-4} \sigma_{n-1}^{-1} \sigma_{n-3}^{-1}} \\ &= \sigma_{n-5} \sigma_{n-2}^{-1} \sigma_{n-3}^{-1} \sigma_{n-2} \sigma_{n-2} \overline{\sigma_{n-4} \sigma_{n-4} \sigma_{n-1}^{-1} \sigma_{n-3}^{-1}} \\ &= \sigma_{n-5} \sigma_{n-2}^{-1} \sigma_{n-3}^{-1} \sigma_{n-2} \sigma_{n-2} \overline{\sigma_{n-4} \sigma_{n-4} \sigma_{n-1}^{-1} \sigma_{n-3}^{-1}} \\ &= \sigma_{n-5} \sigma_{n-2}^{-1} \sigma_{n-3}^{-1} \sigma_{n-2} \sigma_{n-2} \sigma_{n-4} \sigma_{n-4} \sigma_{n-1}^{-1} \sigma_{n-3}^{-1}} \\ &= \sigma_{n-5} \sigma_{n-2}^{-1} \sigma_{n-3}^{-1} \sigma_{n-2} \sigma_{n-2} \sigma_{n-4} \sigma_{n-4} \sigma_{n-1}^{-1} \sigma_{n-3}^{-1}} \\ &= \sigma_{n-5} \sigma_{n-2}^{-1} \sigma_{n-3}^{-1} \sigma_{n-2} \sigma_{n-2}^{-1} \sigma_{n-2$$

$$\begin{aligned} x_{3} &= x_{2}b^{-1} \\ &= \sigma_{n-5}\sigma_{n-2}^{-1}\sigma_{n-3}^{-1}\sigma_{n-2}\sigma_{n-2}\sigma_{n-3}\sigma_{n-4}\sigma_{n-1}^{-1} \cdot \sigma_{n-2}^{-1}\sigma_{n-1} \left[\alpha_{0}^{-1}\sigma_{n-1}\right]T \\ &= \sigma_{n-5}\sigma_{n-2}^{-1}\sigma_{n-3}^{-1}\sigma_{n-2}\sigma_{n-2}\sigma_{n-3}\sigma_{n-4}\sigma_{n-1}^{-1}\sigma_{n-2}^{-1}\sigma_{n-1} \left[\sigma_{n-2}\alpha_{0}^{-1}\right]T \\ &= \sigma_{n-5}\sigma_{n-2}^{-1}\sigma_{n-3}^{-1}\sigma_{n-2}\sigma_{n-2}\sigma_{n-3}\sigma_{n-4}\sigma_{n-1}^{-1} \left[\sigma_{n-2}^{-1}\sigma_{n-1}\sigma_{n-2}\right]\alpha_{0}^{-1}T \\ &= \sigma_{n-5}\sigma_{n-2}^{-1}\sigma_{n-3}^{-1}\sigma_{n-2}\sigma_{n-2}\sigma_{n-3}\sigma_{n-4}\sigma_{n-1}^{-1} \left[\sigma_{n-1}^{-1}\sigma_{n-2}\sigma_{n-1}^{-1}\alpha_{0}^{-1}T \right] \\ &= \sigma_{n-5}\sigma_{n-2}^{-1}\sigma_{n-3}^{-1}\sigma_{n-2}\sigma_{n-2}\sigma_{n-3} \left[\sigma_{n-4}\sigma_{n-2}\right]\sigma_{n-1}^{-1}\alpha_{0}^{-1}T \\ &= \sigma_{n-5}\sigma_{n-2}^{-1}\sigma_{n-3}^{-1}\sigma_{n-2}\sigma_{n-2}\sigma_{n-3}\sigma_{n-2}\sigma_{n-4}\sigma_{n-1}^{-1}\alpha_{0}^{-1}T \\ &= \sigma_{n-5}\sigma_{n-2}^{-1}\sigma_{n-3}^{-1}\sigma_{n-2} \left[\sigma_{n-3}\sigma_{n-2}\sigma_{n-3}\sigma_{n-2}\sigma_{n-4}\sigma_{n-1}^{-1}\alpha_{0}^{-1}T \right] \\ &= \sigma_{n-5}\sigma_{n-2}^{-1}\sigma_{n-3}^{-1}\sigma_{n-2} \left[\sigma_{n-3}\sigma_{n-2}\sigma_{n-3}\sigma_{n-2}\sigma_{n-4}\sigma_{n-1}^{-1}\alpha_{0}^{-1}T \right] \end{aligned}$$

$$= \sigma_{n-5}\sigma_{n-2}^{-1}\sigma_{n-3}^{-1}\overline{\sigma_{n-2}\sigma_{n-3}\sigma_{n-2}}\sigma_{n-3}\sigma_{n-4}\sigma_{n-1}^{-1}\alpha_{0}^{-1}T$$

$$= \sigma_{n-5}\sigma_{n-2}\sigma_{n-3}\overline{\sigma_{n-3}\sigma_{n-3}\sigma_{n-2}\sigma_{n-3}}\sigma_{n-3}\sigma_{n-4}\sigma_{n-1}^{-1}\alpha_{0}^{-1}T$$

$$= \sigma_{n-5}\sigma_{n-3}\sigma_{n-3}\sigma_{n-4}\sigma_{n-1}^{-1}\alpha_{0}^{-1}T$$

$$\begin{aligned} x_4 &= x_3 a \\ &= \sigma_{n-5} \sigma_{n-3} \sigma_{n-3} \sigma_{n-4} \sigma_{n-1}^{-1} \boxed{\alpha_0^{-1} T \cdot \sigma_{n-3} T \alpha_0} \sigma_{n-3}^{-1} \\ &= \sigma_{n-5} \sigma_{n-3} \sigma_{n-3} \sigma_{n-4} \sigma_{n-1}^{-1} \boxed{\sigma_{n-4}^{-1}} \sigma_{n-3}^{-1} \\ &= \sigma_{n-5} \sigma_{n-3} \sigma_{n-1}^{-1} \end{aligned}$$

Define $\gamma_k := \sigma_k \sigma_{k+2} \sigma_{k+4}^{-1}$ where subscripts are taken modulo *n*. Also,

$$a^{2k}\gamma_1 a^{-2k} = a^{2k}\sigma_1\sigma_3\sigma_5^{-1}a^{-2k}$$

= $a^{2k}\sigma_{2k+1}\sigma_{2k+3}\sigma_{2k+5}^{-1}a^{-2k}$
= γ_{2k+1}

for all odd *k*. The above computations show that $\gamma_{n-5} \in H$. Hence, $\gamma_k \in H$ for all odd *k*. Thus,

$$y = \gamma_1 \gamma_3 \dots \gamma_{n-1}$$

= $\sigma_1 \sigma_3 \dots \sigma_{n-3} \sigma_{n-1}$
 $\in H.$

One can see this by noting that each pair of the σ_i 's which appear in *y* commute and hence, the right-hand side can be obtained by adding exponents for each σ_i which appears.

Lemma 4.5. We have

$$z := \sigma_{n-2} \prod_{\substack{k=1\\k \text{ odd}}}^{n-5} \sigma_k = \sigma_1 \sigma_3 \dots \sigma_{n-5} \sigma_{n-2} \in H.$$

Proof. We start with

$$ab = \sigma_{n-3} T \alpha_0 \sigma_{n-3}^{-1} \cdot T \sigma_{n-1}^{-1} \alpha_0 \sigma_{n-1}^{-1} \sigma_{n-2}$$

= $\sigma_{n-3} \alpha_0 \sigma_{n-3} \sigma_{n-1}^{-1} \alpha_0 \sigma_{n-1}^{-1} \sigma_{n-2}$
= $\left(\alpha_0 \sigma_{n-1}^{-1}\right)^2 \sigma_{n-5} \sigma_{n-4} \sigma_{n-2}$

Let $\Delta_k := \sigma_k \sigma_{k+1} \sigma_{k+3}$ for $1 \le k \le n-5$. Then,

$$\left(\alpha_0 \sigma_{n-1}^{-1}\right)^2 \Delta_k = \Delta_{k+2} \left(\alpha_0 \sigma_{n-1}^{-1}\right)^2$$

for $1 \le k \le n - 7$ and

$$ab = \left(\alpha_{0}\sigma_{n-1}^{-1}\right)^{2}\Delta_{n-5}$$

= $\alpha_{0}\sigma_{n-1}^{-1}\alpha_{0}\sigma_{n-1}^{-1}\sigma_{n-5}\sigma_{n-4}\sigma_{n-2}$
= $\alpha_{0}^{2}\sigma_{n-2}^{-1}\sigma_{n-1}^{-1}\sigma_{n-5}\sigma_{n-4}\sigma_{n-2}$
= $\alpha_{0}^{2}\sigma_{n-5}\sigma_{n-4}\sigma_{n-2}^{-1}\sigma_{n-1}^{-1}\sigma_{n-2}$
= $\sigma_{n-3}\sigma_{n-2}\alpha_{0}^{2}\sigma_{n-1}\sigma_{n-2}^{-1}\sigma_{n-1}^{-1}$
= $\sigma_{n-3}\sigma_{n-2}\sigma_{1}\left(\alpha_{0}\sigma_{n-1}^{-1}\right)^{2}$.

$$\begin{split} \Delta_1 \Delta_3 \Delta_5 \dots \Delta_{n-5} &= \sigma_1 \sigma_2 \sigma_4 \cdot \sigma_3 \sigma_4 \sigma_6 \cdot \sigma_5 \sigma_6 \sigma_8 \dots \sigma_{n-7} \sigma_{n-6} \sigma_{n-4} \cdot \sigma_{n-5} \sigma_{n-4} \sigma_{n-2} \\ &= \sigma_1 \sigma_2 \sigma_3 \cdot \sigma_4 \sigma_3 \sigma_5 \cdot \sigma_6 \sigma_5 \sigma_7 \dots \sigma_{n-6} \sigma_{n-7} \sigma_{n-5} \cdot \sigma_{n-4} \sigma_{n-5} \sigma_{n-2} \\ &= \sigma_1 \sigma_2 \dots \sigma_{n-4} \cdot \sigma_3 \sigma_5 \dots \sigma_{n-5} \sigma_{n-2} \\ &= \alpha_0 \sigma_{n-1}^{-1} \sigma_{n-2}^{-1} \sigma_{n-3}^{-1} \cdot \sigma_3 \sigma_5 \dots \sigma_{n-5} \sigma_{n-2} \\ &= \alpha_0 \sigma_{n-1}^{-1} \sigma_{n-2}^{-1} \sigma_{n-3}^{-1} \cdot \sigma_1^{-1} z. \end{split}$$

Therefore,

$$(ab)^{\frac{n}{2}-1} = \left[\left(\alpha_0 \sigma_{n-1}^{-1} \right)^2 \Delta_{n-5} \right] \cdot \left(\alpha_0 \sigma_{n-1}^{-1} \right)^2 \Delta_{n-5} \dots \left(\alpha_0 \sigma_{n-1}^{-1} \right)^2 \Delta_{n-5} \\ = \left[\sigma_{n-3} \sigma_{n-2} \sigma_1 \left(\alpha_0 \sigma_{n-1}^{-1} \right)^2 \right] \cdot \left(\alpha_0 \sigma_{n-1}^{-1} \right)^2 \Delta_{n-5} \dots \left(\alpha_0 \sigma_{n-1}^{-1} \right)^2 \Delta_{n-5} \\ = \sigma_{n-3} \sigma_{n-2} \sigma_1 \left(\alpha_0 \sigma_{n-1}^{-1} \right)^{n-2} \Delta_1 \Delta_3 \Delta_5 \dots \Delta_{n-7} \Delta_{n-5} \\ = \sigma_{n-3} \sigma_{n-2} \sigma_1 \left[\left(\alpha_0 \sigma_{n-1}^{-1} \right)^{n-2} \cdot \alpha_0 \sigma_{n-1}^{-1} \right] \sigma_{n-2}^{-1} \sigma_{n-3}^{-1} \cdot \sigma_1^{-1} z \\ = \sigma_{n-3} \sigma_{n-2} \sigma_1 \sigma_{n-2}^{-1} \sigma_{n-3}^{-1} \cdot \sigma_1^{-1} z \\ = z,$$

where we use the fact that $\alpha_0 \sigma_{n-1}^{-1} = \alpha_1$ has order n - 1.

Proof of Theorem 4.3. We have

$$w := z^{-1}y \cdot \gamma_{n-3}^{-1} = \sigma_{n-2}^{-1}\sigma_{n-3}\sigma_{n-1} \cdot \sigma_{n-3}^{-1}\sigma_{n-1}^{-1}\sigma_{1} = \sigma_{n-2}^{-1}\sigma_{1} \in H.$$

Since

$$a^{-1}b = \sigma_{n-3}\sigma_{n-4}\sigma_{n-2}^{-1}\sigma_{n-1}\sigma_{n-2},$$

we have that

$$c := a^{-1}b \cdot w \cdot b^{-1}a = \sigma_{n-1}^{-1}\sigma_1.$$

Thus, $T\alpha_0 \in H$ and, conjugating σ_{n-3} by $T\alpha_0$ gives $\sigma_i \in H$ for all $1 \leq i \leq n-1$. \Box

4.3 Periodic generation of $Mod^{\pm}(\Sigma_2)$

Theorem 4.6. The group $Mod^{\pm}(\Sigma_2)$ is generated by two elements of finite order.

Proof. We have the exact sequence from Theorem 2.3:

$$0 \to \langle \iota \rangle \to \operatorname{Mod}^{\pm}(\Sigma_2) \xrightarrow{q} \operatorname{Mod}^{\pm}(\Sigma_{0,6}) \to 0, \tag{7}$$

where ι is the mapping class of a hyperelliptic involution, so that $\langle \iota \rangle \cong \mathbb{Z}/2\mathbb{Z}$. Let a, b be as in the previous theorem and let \tilde{a}, \tilde{b} be preimages to $Mod^{\pm}(\Sigma_2)$. We claim that \tilde{a}, \tilde{b} generate $Mod^{\pm}(\Sigma_2)$. Let $H = \langle \tilde{a}, \tilde{b} \rangle$ so that $q(H) = Mod^{\pm}(\Sigma_{0,6})$. For any $g \in Mod^{\pm}(\Sigma_2)$, we must have either $g \in H$ or $\iota g \in H$ since these are the only two preimages of q(g). Hence, $[Mod^{\pm}(\Sigma_2) : H] \leq 2$.

Suppose that $[Mod^{\pm}(\Sigma_2) : H] = 2$. Then the quotient map

$$\varphi: \operatorname{Mod}^{\pm}(\Sigma_2) \to \operatorname{Mod}^{\pm}(\Sigma_2)/H \cong \mathbb{Z}/2\mathbb{Z}$$

factors through the abelianization map

$$\psi: \operatorname{Mod}^{\pm}(\Sigma_2) \to (\mathbb{Z}/2\mathbb{Z})^2$$

say $\varphi = f \circ \psi$ for some $f : (\mathbb{Z}/2\mathbb{Z})^2 \to \mathbb{Z}/2\mathbb{Z}$. Let $\psi' : \text{Mod}^{\pm}(\Sigma_{0,6}) \to (\mathbb{Z}/2\mathbb{Z})^2$ be the abelianization of $\text{Mod}^{\pm}(\Sigma_{0,6})$ given by $\psi'(\sigma_i) = (1,0)$, for $1 \le i \le n-1$, and $\psi'(T) = (0,1)$. Since the hyperelliptic involution is a product of 10 Dehn twists, its image in the abelianization is trivial (Section 5.1.3, [5]). Hence, $\psi = \psi' \circ q$. Since

$$\psi(\tilde{a}) = \psi'(a) = (1, 1) \text{ and } \psi(\tilde{b}) = \psi'(b) = (0, 1)$$

and

$$f(1,1) = \varphi(\tilde{a}) = 0$$
 and $f(0,1) = \varphi(\tilde{b}) = 0$,

we find that f = 0 and φ is not surjective. This gives a contradiction.

References

- [1] J. Birman and H. Hilden. On isotopies of homeomorphisms of riemann surfaces. *The Annals of Mathematics*, 97(3):424–439, 1973.
- [2] T. E. Brendle and B. Farb. Every mapping class group is generated by 6 involutions. *Journal of Algebra*, 278(1):187–198, 2004.
- [3] M. Dehn. Die gruppe der abbildungsklassen. Acta Mathematica, 69:135–206, 1938.
- [4] X. Du. The extended mapping class group can be generated by two torsions. *Journal of Knot Theory and Its Ramifications*, 26(11):1750061, 2017.
- [5] X. Du. The torsion generating set of the extended mapping class groups in low genus cases. *Osaka Journal of Mathematics*, 58(4):815–825, 2021.
- [6] B. Farb and D. Margalit. *A primer on mapping class groups (pms-49),* volume 41. Princeton university press, 2011.

- [7] S. P. Humphries. Generators for the mapping class group. In *Topology of Low-Dimensional Manifolds: Proceedings of the Second Sussex Conference*, 1977, pages 44–47. Springer, 2006.
- [8] D. Johnson. The structure of the torelli group i: a finite set of generators for j. *Annals of Mathematics*, 118(3):423–442, 1983.
- [9] M. Kassabov. Generating mapping class groups by involutions. *arXiv preprint math*/0311455, 2003.
- [10] M. Korkmaz. Generating the surface mapping class group by two elements. *Transactions of the American Mathematical Society*, 357(8):3299–3310, 2005.
- [11] M. Korkmaz. Mapping class group is generated by three involutions. *Mathematical Research Letters*, 27(4):1095–1108, 2020.
- [12] W. B. Lickorish. A finite set of generators for the homeotopy group of a 2manifold. In *Mathematical Proceedings of the Cambridge Philosophical Society*, volume 60, pages 769–778. Cambridge University Press, 1964.
- [13] F. Luo. Torsion elements in the mapping class group of a surface. *arXiv preprint math/0004048*, 2000.
- [14] C. Maclachlan. Modulus space is simply-connected. Proceedings of the American Mathematical Society, 29(1):85–86, 1971.
- [15] N. Monden. On minimal generating sets for the mapping class group of a punctured surface. *Israel Journal of Mathematics*, pages 1–23, 2024.
- [16] K. Murasugi. Seifert fibre spaces and braid groups. Proceedings of the London Mathematical Society, s3-44(1):71–84, 1982.
- [17] A. Tülin, M. Pamuk, and O. Yildiz. Generating the extended mapping class group by three involutions. *Osaka J. Math.*, 60(1):61–75, January 2023.
- [18] O. Yıldız. Generating the mapping class group by two torsion elements. *Mediterranean Journal of Mathematics*, 19(2):59, 2022.