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Section 6.1: Area

Example
Find the area of the following figure:
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Section 6.1: Area

Example
Step 1: Break up the region using vertical and horizontal lines.
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Section 6.1: Area

Example

Step 1: Break up the region using vertical and horizontal lines. We get 3
distinct regions.
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Section 6.1: Area

Example
Step 2: Calculate the area of each region and add the results.
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Example: Blue Region

For the blue region, we have

~1/2 /1
Area = / (—2 — x2)
_1 X

N W

-2 -1




Example: Blue Region

N W

For the blue region, we have

~1/2 /1
Area = / (—2 — x2) dx
_1 X



Example: Blue Region
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Example: Blue Region

4 For the blue region, we have
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2 | y=x2 _1 X2
| —1/2
1 y= 1/><2 = (—X_l — 1X3>
3 -1
-2 -1 1 2 1 1
(2+2) - (1+3)



Example:

Green Region

= ON W b

For the green region, we have
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Example:

Green Region
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For the green region, we have
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Example:

Green Region
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For the green region, we have
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172 \X

y=x 1

(o
y:l/x2 3 1/2

-2

-1

N
Il

(1-5) (%)

17

24



Example: Red Region

\ / For the red region, we have
y=4
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Example: Red Region

\ / For the red region, we have
y=4
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Example: Red Region

\ / For the red region, we have
y=4
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Example: Red Region

\ / For the red region, we have
y=4
1/2
Area = / (4 —x%) dx
e -1/2
1 \1/2
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Example: Conclusion

Step 3: Therefore, the total area is:
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Example: Conclusion

Step 3: Therefore, the total area is:

Ablue + Agreen + Ared =

v o4 17
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Example: Conclusion

Step 3:

Therefore, the total area is:
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Example: Conclusion

Step 3: Therefore, the total area is:

17 47 17
u A(}'reen Are = 51 Py N
Ablue + Agreen + Ared 24+12+24
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Example: Another method

In this example, we integrated with respect to x.

If we integrated with respect to y, we would break up our region using
horizontal lines as follows:
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In this example, we integrated with respect to x.

If we integrated with respect to y, we would break up our region using
horizontal lines as follows:
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Example: Another method

In this example, we integrated with respect to x.

If we integrated with respect to y, we would break up our region using
horizontal lines as follows:
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Section 4.2: Volumes using Cross-Sectional Area

Suppose we have a solid S that sitting along the x-axis from x = a to b.
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Section 4.2: Volumes using Cross-Sectional Area

We slice S using a plane P, through x and perpendicular to the x-axis.
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Section 4.2: Volumes using Cross-Sectional Area

Let A(x) be the cross-sectional area.

¥




Section 4.2: Volumes using Cross-Sectional Area

Let A(x) be the cross-sectional area.

¥

0 a M( b x

The volume of S is then given by

Vol(S) = /b A(x) dx.



Volumes using Cross-Sectional Area




Example: Pyramids

Find the volume of a square pyramid of height h and base length b.



Example: Pyramids

Find the volume of a square pyramid of height h and base length b.
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Slice the pyramid with a plane P, parallel to the base of the pyramid and
is y units above the base.



Example: Pyramids

Find the volume of a square pyramid of height h and base length b.
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Slice the pyramid with a plane P, parallel to the base of the pyramid and
is y units above the base.

We get a square. What is its side length s7



Pyramids

Here's a side view of the pyramid:




Pyramids

Here's a side view of the pyramid:

"

Because we see similar triangles, we know that
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Pyramids

Here's a side view of the pyramid:

Because we see similar triangles, we know that

h—y
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Pyramids

Here's a side view of the pyramid:

"

S

b

Because we see similar triangles, we know that

s_h-y

b h

Therefore,
b
= — h —
s=(h—y)

and the area of this cross-section is A(y) = %z(h —y)2



Pyramids

b2
Therefore the area of this slice is A(y) = ﬁ(h —y)2



Pyramids

b2
Therefore the area of this slice is A(y) = ﬁ(h —y)2

The volume of the pyramid is



Pyramids

b2
Therefore the area of this slice is A(y) = ﬁ(h —y)2

The volume of the pyramid is

/OhA(y)dy=/0hf;(h—y)2dy



Pyramids

b2
Therefore the area of this slice is A(y) = ﬁ(h —y)2

The volume of the pyramid is
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Pyramids
b2
Therefore the area of this slice is A(y) = ﬁ(h —y)2
The volume of the pyramid is
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Pyramids
b2

*2(/7*)’)2-

Therefore the area of this slice is A(y) = h

The volume of the pyramid is
h h b2
2
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Example: Volume of a Sphere

Consider a sphere of radius r along the x-axis with center at the origin.



Example: Volume of a Sphere

Consider a sphere of radius r along the x-axis with center at the origin.
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Example: Volume of a Sphere

Consider a sphere of radius r along the x-axis with center at the origin.
Intersect the sphere with a plane through a point x.
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Example: Volume of a Sphere

Consider a sphere of radius r along the x-axis with center at the origin.
Intersect the sphere with a plane through a point x.
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Example: Volume of a Sphere

Consider a sphere of radius r along the x-axis with center at the origin.
Intersect the sphere with a plane through a point x.
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This gives a cross-section which is a circle.



Sphere

We want the area of this cross-section. Therefore, we want the radius.



Sphere

We want the area of this cross-section. Therefore, we want the radius.
From the side:
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Sphere

We want the area of this cross-section. Therefore, we want the radius.
From the side:
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If R is the radius of the cross-section, then



Sphere

We want the area of this cross-section. Therefore, we want the radius.
From the side:
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If R is the radius of the cross-section, then
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Sphere

We want the area of this cross-section. Therefore, we want the radius.
From the side:
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If R is the radius of the cross-section, then
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Sphere

We want the area of this cross-section. Therefore, we want the radius.
From the side:

5 o

If R is the radius of the cross-section, then



Sphere

The area of this cross-section is A(x) = TR?



Sphere

The area of this cross-section is A(x) = TR? = 7(r? — x?).



Sphere

The area of this cross-section is A(x) = TR? = 7(r? — x?).
The volume of the sphere is

/r A(X)dx:ﬂ/r(r2—x2)dx
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Sphere

The area of this cross-section is A(x) = TR? = 7(r? — x?).
The volume of the sphere is

/r A(x)dx:ﬂ'/r(rz—x2)dx

—r —r

= 27r/ (r2 —x2) dx
0



Sphere

The area of this cross-section is A(x) = TR? = 7(r? — x?).
The volume of the sphere is
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Sphere

The area of this cross-section is A(x) = TR? = 7(r? — x?).
The volume of the sphere is

/r A(x)dx:ﬂ'/r(rz—x2)dx

= 27r/ (r2 - x2) dx
0
1 r
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Sphere

The area of this cross-section is A(x) = TR? = 7(r? — x?).
The volume of the sphere is

/r A(x)dx:ﬂ'/r(rz—x2)dx
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Example

Suppose we have a solid S defined
as follows.
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Suppose we have a solid S defined y=362-1

as follows. The solid has a base 1

given by the following region: N
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Example

Suppose we have a solid S defined
as follows. The solid has a base
given by the following region:

Suppose that if we slice S
perpendicular to the x-axis
(vertically), we obtain an
equilateral triangle with one side
lying on the xy-plane.




Example

Suppose we have a solid S defined
as follows. The solid has a base
given by the following region:

Suppose that if we slice S
perpendicular to the x-axis
(vertically), we obtain an
equilateral triangle with one side
lying on the xy-plane.
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Example

So, we have this figure:

With cross-section:
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So, we have this figure:
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So, we have this figure:

With cross-section:
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So, we have this figure:

With cross-section:
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Example

The area of this cross-section is



Example

The area of this cross-section is



Example

The area of this cross-section is

Therefore, the volume of this solid is



Example

The area of this cross-section is

Therefore, the volume of this solid is
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Example

The area of this cross-section is

Therefore, the volume of this solid is
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The area of this cross-section is



Example

The area of this cross-section is
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The area of this cross-section is



Example

The area of this cross-section is
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