MATH 15200

Calculus

University of Chicago

January 29, 2020

Example

Find the area of the following figure:

Example

Step 1: Break up the region using vertical and horizontal lines.

Example

Step 1: Break up the region using vertical and horizontal lines. We get 3 distinct regions.

Example

Step 2: Calculate the area of each region and add the results.

Area =
$$
\int_{-1}^{-1/2} \left(\frac{1}{x^2} - x^2\right) dx
$$

$$
\text{Area} = \int_{-1}^{-1/2} \left(\frac{1}{x^2} - x^2 \right) dx
$$

$$
= \left(-x^{-1} - \frac{1}{3}x^3 \right)_{-1}^{-1/2}
$$

Area =
$$
\int_{-1}^{-1/2} \left(\frac{1}{x^2} - x^2\right) dx
$$

$$
= \left(-x^{-1} - \frac{1}{3}x^3\right)_{-1}^{-1/2}
$$

$$
= \left(2 + \frac{1}{24}\right) - \left(1 + \frac{1}{3}\right)
$$

Area =
$$
\int_{-1}^{-1/2} \left(\frac{1}{x^2} - x^2\right) dx
$$

=
$$
\left(-x^{-1} - \frac{1}{3}x^3\right)_{-1}^{-1/2}
$$

=
$$
\left(2 + \frac{1}{24}\right) - \left(1 + \frac{1}{3}\right)
$$

=
$$
\frac{17}{24}
$$

$$
\text{Area} = \int_{1/2}^{1} \left(\frac{1}{x^2} - x^2 \right) \, dx
$$

$$
\text{Area} = \int_{1/2}^{1} \left(\frac{1}{x^2} - x^2 \right) dx
$$

$$
= \left(-x^{-1} - \frac{1}{3}x^3 \right)_{1/2}^{1}
$$

Area =
$$
\int_{1/2}^{1} \left(\frac{1}{x^2} - x^2\right) dx
$$

\n= $\left(-x^{-1} - \frac{1}{3}x^3\right)_{1/2}^{1}$
\n= $\left(-1 - \frac{1}{3}\right) - \left(-2 - \frac{1}{24}\right)$

Area =
$$
\int_{1/2}^{1} \left(\frac{1}{x^2} - x^2\right) dx
$$

\n= $\left(-x^{-1} - \frac{1}{3}x^3\right)_{1/2}^{1}$
\n= $\left(-1 - \frac{1}{3}\right) - \left(-2 - \frac{1}{24}\right)$
\n= $\frac{17}{24}$

Area =
$$
\int_{-1/2}^{1/2} (4 - x^2) dx
$$

$$
\text{Area} = \int_{-1/2}^{1/2} (4 - x^2) \, dx
$$
\n
$$
= \left(4x - \frac{1}{3}x^3 \right)_{-1/2}^{1/2}
$$

Area =
$$
\int_{-1/2}^{1/2} (4 - x^2) dx
$$

=
$$
(4x - \frac{1}{3}x^3)_{-1/2}^{1/2}
$$

=
$$
(2 - \frac{1}{24}) - (-2 + \frac{1}{24})
$$

Area =
$$
\int_{-1/2}^{1/2} (4 - x^2) dx
$$

\n= $(4x - \frac{1}{3}x^3)_{-1/2}^{1/2}$
\n= $(2 - \frac{1}{24}) - (-2 + \frac{1}{24})$
\n= $\frac{47}{12}$

$$
A_{blue} + A_{green} + A_{red} = \frac{17}{24} + \frac{47}{12} + \frac{17}{24}
$$

$$
A_{blue} + A_{green} + A_{red} = \frac{17}{24} + \frac{47}{12} + \frac{17}{24}
$$

$$
= \frac{17}{24} + \frac{94}{24} + \frac{17}{24}
$$

$$
A_{blue} + A_{green} + A_{red} = \frac{17}{24} + \frac{47}{12} + \frac{17}{24}
$$

$$
= \frac{17}{24} + \frac{94}{24} + \frac{17}{24}
$$

$$
= \frac{128}{24}
$$

$$
A_{blue} + A_{green} + A_{red} = \frac{17}{24} + \frac{47}{12} + \frac{17}{24}
$$

$$
= \frac{17}{24} + \frac{94}{24} + \frac{17}{24}
$$

$$
= \frac{128}{24}
$$

$$
= \frac{16}{3}
$$

Example: Another method

In this example, we integrated with respect to x .

If we integrated with respect to y , we would break up our region using horizontal lines as follows:

Example: Another method

In this example, we integrated with respect to x .

If we integrated with respect to y , we would break up our region using horizontal lines as follows:

Example: Another method

In this example, we integrated with respect to x .

If we integrated with respect to y , we would break up our region using horizontal lines as follows:

Suppose we have a solid S that sitting along the x-axis from $x = a$ to b.

We slice S using a plane P_x through x and perpendicular to the x-axis.

Let $A(x)$ be the cross-sectional area.

Let $A(x)$ be the cross-sectional area.

The volume of S is then given by

$$
\text{Vol}(S) = \int_{a}^{b} A(x) \, dx.
$$

Volumes using Cross-Sectional Area

Example: Pyramids

Find the volume of a square pyramid of height h and base length b .

Example: Pyramids

Find the volume of a square pyramid of height h and base length b .

Slice the pyramid with a plane P_y parallel to the base of the pyramid and is y units above the base.

Example: Pyramids

Find the volume of a square pyramid of height h and base length b .

Slice the pyramid with a plane P_v parallel to the base of the pyramid and is y units above the base.

We get a square. What is its side length s ?

Here's a side view of the pyramid:

Here's a side view of the pyramid:

Because we see similar triangles, we know that

$$
\frac{s}{b}=\frac{h-y}{h}.
$$

Here's a side view of the pyramid:

Because we see similar triangles, we know that

$$
\frac{s}{b}=\frac{h-y}{h}.
$$

Therefore,

$$
s=\frac{b}{h}(h-y)
$$

Here's a side view of the pyramid:

Because we see similar triangles, we know that

$$
\frac{s}{b}=\frac{h-y}{h}.
$$

Therefore,

$$
s=\frac{b}{h}(h-y)
$$

and the area of this cross-section is $A(y) = \frac{b^2}{h^2}$ $\frac{b^2}{h^2}(h-y)^2$.
Therefore the area of this slice is
$$
A(y) = \frac{b^2}{h^2}(h - y)^2
$$
.

$$
\int_0^h A(y) \, dy = \int_0^h \frac{b^2}{h^2} (h - y)^2 \, dy
$$

$$
\int_0^h A(y) \, dy = \int_0^h \frac{b^2}{h^2} (h - y)^2 \, dy
$$

$$
= \frac{b^2}{h^2} \int_0^h (h - y)^2 \, dy
$$

$$
\int_0^h A(y) dy = \int_0^h \frac{b^2}{h^2} (h - y)^2 dy
$$

= $\frac{b^2}{h^2} \int_0^h (h - y)^2 dy$
= $-\frac{b^2}{h^2} \cdot \frac{1}{3} (h - y)^3 \Big|_0^h$

$$
\int_0^h A(y) dy = \int_0^h \frac{b^2}{h^2} (h - y)^2 dy
$$

= $\frac{b^2}{h^2} \int_0^h (h - y)^2 dy$
= $-\frac{b^2}{h^2} \cdot \frac{1}{3} (h - y)^3 \Big|_0^h$
= $\frac{1}{3} b^2 h$

Consider a sphere of radius r along the x -axis with center at the origin.

Consider a sphere of radius r along the x -axis with center at the origin.

Consider a sphere of radius r along the x -axis with center at the origin. Intersect the sphere with a plane through a point x .

Consider a sphere of radius r along the x -axis with center at the origin. Intersect the sphere with a plane through a point x .

Consider a sphere of radius r along the x -axis with center at the origin. Intersect the sphere with a plane through a point x .

This gives a cross-section which is a circle.

We want the area of this cross-section. Therefore, we want the radius.

We want the area of this cross-section. Therefore, we want the radius. From the side:

We want the area of this cross-section. Therefore, we want the radius. From the side:

We want the area of this cross-section. Therefore, we want the radius. From the side:

$$
x^2 + R^2 = r^2
$$

We want the area of this cross-section. Therefore, we want the radius. From the side:

$$
x2 + R2 = r2
$$

$$
R2 = r2 - x2
$$

We want the area of this cross-section. Therefore, we want the radius. From the side:

$$
x2 + R2 = r2
$$

$$
R2 = r2 - x2
$$

$$
R = \sqrt{r2 - x2}
$$

The area of this cross-section is $A(x)=\pi R^2$

The area of this cross-section is $A(x) = \pi R^2 = \pi (r^2 - x^2)$.

$$
\int_{-r}^{r} A(x) dx = \pi \int_{-r}^{r} (r^2 - x^2) dx
$$

$$
\int_{-r}^{r} A(x) dx = \pi \int_{-r}^{r} (r^2 - x^2) dx
$$

$$
= 2\pi \int_{0}^{r} (r^2 - x^2) dx
$$

$$
\int_{-r}^{r} A(x) dx = \pi \int_{-r}^{r} (r^2 - x^2) dx
$$

$$
= 2\pi \int_{0}^{r} (r^2 - x^2) dx
$$

$$
= 2\pi \left(r^2 x - \frac{1}{3} x^3 \right)_{0}^{r}
$$

$$
\int_{-r}^{r} A(x) dx = \pi \int_{-r}^{r} (r^2 - x^2) dx
$$

= $2\pi \int_{0}^{r} (r^2 - x^2) dx$
= $2\pi (r^2 - \frac{1}{3}x^3) \Big|_{0}^{r}$
= $2\pi (r^3 - \frac{1}{3}r^3)$

$$
\int_{-r}^{r} A(x) dx = \pi \int_{-r}^{r} (r^2 - x^2) dx
$$

= $2\pi \int_{0}^{r} (r^2 - x^2) dx$
= $2\pi (r^2 - \frac{1}{3}x^3) \Big|_{0}^{r}$
= $2\pi (r^3 - \frac{1}{3}r^3)$
= $\frac{4\pi}{3}r^3$.

Suppose we have a solid S defined as follows.

Suppose we have a solid S defined as follows. The solid has a base given by the following region:

Suppose we have a solid S defined as follows. The solid has a base given by the following region:

Suppose that if we slice S perpendicular to the x-axis (vertically), we obtain an equilateral triangle with one side lying on the xy-plane.

Suppose we have a solid S defined as follows. The solid has a base given by the following region:

Suppose that if we slice S perpendicular to the x-axis (vertically), we obtain an equilateral triangle with one side lying on the xy-plane.

So, we have this figure:

So, we have this figure:

So, we have this figure:

So, we have this figure:

So, we have this figure:

The area of this cross-section is

The area of this cross-section is

$$
A(x) = \frac{\sqrt{3}}{4}(1 - x^2)^2.
$$

The area of this cross-section is

$$
A(x) = \frac{\sqrt{3}}{4}(1 - x^2)^2.
$$

Therefore, the volume of this solid is
The area of this cross-section is

$$
A(x) = \frac{\sqrt{3}}{4}(1 - x^2)^2.
$$

$$
\int_{-1}^{1} A(x) dx = \frac{\sqrt{3}}{4} \int_{-1}^{1} (1 - x^2)^2 dx
$$

The area of this cross-section is

$$
A(x) = \frac{\sqrt{3}}{4}(1 - x^2)^2.
$$

$$
\int_{-1}^{1} A(x) dx = \frac{\sqrt{3}}{4} \int_{-1}^{1} (1 - x^2)^2 dx
$$

$$
= \frac{\sqrt{3}}{4} \cdot 2 \int_{0}^{1} (1 - x^2)^2 dx
$$

The area of this cross-section is

$$
A(x) = \frac{\sqrt{3}}{4}(1 - x^2)^2.
$$

$$
\int_{-1}^{1} A(x) dx = \frac{\sqrt{3}}{4} \int_{-1}^{1} (1 - x^2)^2 dx
$$

= $\frac{\sqrt{3}}{4} \cdot 2 \int_{0}^{1} (1 - x^2)^2 dx$
= $\frac{\sqrt{3}}{2} \int_{0}^{1} (1 - 2x^2 + x^4) dx$

The area of this cross-section is

$$
A(x) = \frac{\sqrt{3}}{4}(1 - x^2)^2.
$$

$$
\int_{-1}^{1} A(x) dx = \frac{\sqrt{3}}{4} \int_{-1}^{1} (1 - x^2)^2 dx
$$

= $\frac{\sqrt{3}}{4} \cdot 2 \int_{0}^{1} (1 - x^2)^2 dx$
= $\frac{\sqrt{3}}{2} \int_{0}^{1} (1 - 2x^2 + x^4) dx$
= $\frac{\sqrt{3}}{2} \left(x - \frac{2}{3}x^3 + \frac{1}{5}x^5 \right)_0^1$

The area of this cross-section is

$$
A(x) = \frac{\sqrt{3}}{4}(1 - x^2)^2.
$$

$$
\int_{-1}^{1} A(x) dx = \frac{\sqrt{3}}{4} \int_{-1}^{1} (1 - x^2)^2 dx
$$

= $\frac{\sqrt{3}}{4} \cdot 2 \int_{0}^{1} (1 - x^2)^2 dx$
= $\frac{\sqrt{3}}{2} \int_{0}^{1} (1 - 2x^2 + x^4) dx$
= $\frac{\sqrt{3}}{2} \left(x - \frac{2}{3}x^3 + \frac{1}{5}x^5\right)_{0}^{1}$
= $\frac{\sqrt{3}}{2} \left(1 - \frac{2}{3} + \frac{1}{5}\right)$

The area of this cross-section is

$$
A(x) = \frac{\sqrt{3}}{4}(1 - x^2)^2.
$$

$$
\int_{-1}^{1} A(x) dx = \frac{\sqrt{3}}{4} \int_{-1}^{1} (1 - x^2)^2 dx
$$

= $\frac{\sqrt{3}}{4} \cdot 2 \int_{0}^{1} (1 - x^2)^2 dx$
= $\frac{\sqrt{3}}{2} \int_{0}^{1} (1 - 2x^2 + x^4) dx$
= $\frac{\sqrt{3}}{2} \left(x - \frac{2}{3}x^3 + \frac{1}{5}x^5\right)_{0}^{1}$
= $\frac{\sqrt{3}}{2} \left(1 - \frac{2}{3} + \frac{1}{5}\right)$
= $\frac{4\sqrt{3}}{15}$