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Section 6.1: Area

Example
Find the area of the following figure:
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Section 6.1: Area

Example
Step 1: Break up the region using vertical and horizontal lines.
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Section 6.1: Area

Example
Step 1: Break up the region using vertical and horizontal lines. We get 3
distinct regions.
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Section 6.1: Area

Example
Step 2: Calculate the area of each region and add the results.
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Example: Blue Region
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Example: Green Region
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Example: Green Region
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Example: Red Region
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Example: Red Region
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Example: Red Region
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Example: Red Region
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Example: Conclusion

Step 3: Therefore, the total area is:
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Example: Another method

In this example, we integrated with respect to x .

If we integrated with respect to y , we would break up our region using
horizontal lines as follows:
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Example: Another method

In this example, we integrated with respect to x .

If we integrated with respect to y , we would break up our region using
horizontal lines as follows:
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Example: Another method

In this example, we integrated with respect to x .

If we integrated with respect to y , we would break up our region using
horizontal lines as follows:
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Section 4.2: Volumes using Cross-Sectional Area

Suppose we have a solid S that sitting along the x-axis from x = a to b.



Section 4.2: Volumes using Cross-Sectional Area

We slice S using a plane Px through x and perpendicular to the x-axis.



Section 4.2: Volumes using Cross-Sectional Area

Let A(x) be the cross-sectional area.



Section 4.2: Volumes using Cross-Sectional Area

Let A(x) be the cross-sectional area.

The volume of S is then given by

Vol(S) =

∫ b

a

A(x) dx .



Volumes using Cross-Sectional Area



Example: Pyramids

Find the volume of a square pyramid of height h and base length b.



Example: Pyramids

Find the volume of a square pyramid of height h and base length b.

Slice the pyramid with a plane Py parallel to the base of the pyramid and
is y units above the base.



Example: Pyramids

Find the volume of a square pyramid of height h and base length b.

Slice the pyramid with a plane Py parallel to the base of the pyramid and
is y units above the base.

We get a square. What is its side length s?



Pyramids

Here’s a side view of the pyramid:
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Here’s a side view of the pyramid:

Because we see similar triangles, we know that
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Here’s a side view of the pyramid:

Because we see similar triangles, we know that
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Pyramids

Here’s a side view of the pyramid:

Because we see similar triangles, we know that
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and the area of this cross-section is A(y) = b2
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Pyramids

Therefore the area of this slice is A(y) =
b2

h2
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Therefore the area of this slice is A(y) =
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Example: Volume of a Sphere

Consider a sphere of radius r along the x-axis with center at the origin.
a
a



Example: Volume of a Sphere

Consider a sphere of radius r along the x-axis with center at the origin.



Example: Volume of a Sphere

Consider a sphere of radius r along the x-axis with center at the origin.
Intersect the sphere with a plane through a point x .



Example: Volume of a Sphere

Consider a sphere of radius r along the x-axis with center at the origin.
Intersect the sphere with a plane through a point x .



Example: Volume of a Sphere

Consider a sphere of radius r along the x-axis with center at the origin.
Intersect the sphere with a plane through a point x .

This gives a cross-section which is a circle.



Sphere

We want the area of this cross-section. Therefore, we want the radius.



Sphere

We want the area of this cross-section. Therefore, we want the radius.
From the side:



Sphere

We want the area of this cross-section. Therefore, we want the radius.
From the side:

If R is the radius of the cross-section, then



Sphere

We want the area of this cross-section. Therefore, we want the radius.
From the side:

If R is the radius of the cross-section, then

x2 + R2 = r2



Sphere

We want the area of this cross-section. Therefore, we want the radius.
From the side:

If R is the radius of the cross-section, then

x2 + R2 = r2

R2 = r2 − x2



Sphere

We want the area of this cross-section. Therefore, we want the radius.
From the side:

If R is the radius of the cross-section, then

x2 + R2 = r2

R2 = r2 − x2

R =
√
r2 − x2



Sphere

The area of this cross-section is A(x) = πR2



Sphere

The area of this cross-section is A(x) = πR2 = π(r2 − x2).



Sphere

The area of this cross-section is A(x) = πR2 = π(r2 − x2).
The volume of the sphere is∫ r
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The area of this cross-section is A(x) = πR2 = π(r2 − x2).
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Suppose we have a solid S defined
as follows.
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Suppose we have a solid S defined
as follows. The solid has a base
given by the following region:
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Example

Suppose we have a solid S defined
as follows. The solid has a base
given by the following region:

Suppose that if we slice S
perpendicular to the x-axis
(vertically), we obtain an
equilateral triangle with one side
lying on the xy -plane.
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