Homework 2

Due Monday, January 20, 2020

1. Given that

$$\int_{-1}^{2} f = 3$$
 and $\int_{-1}^{6} f = 4$,

and

$$\int_{-1}^{3} g = 1$$
 and $\int_{-1}^{6} g = 2$,

find

- (a) (2 points) $\int_{2}^{6} f$ (b) (2 points) $\int_{3}^{6} g$ (c) (2 points) $\int_{-1}^{6} (f+g)$
- 2. (3 points) Use upper and lower sums to show that

$$1 \le \int_{-1}^{1} \frac{dx}{1+x^2} \le 2.$$

3. Calculate the following.

(a) (3 points)
$$\frac{d}{dx} \left[\int_{1}^{3x^{2}} t \sin(t) dt \right]$$

(b) (3 points) $\frac{d}{dx} \left[\int_{x}^{x^{2}} \frac{t}{1+t^{2}} dt \right]$
4. Let $F(x) = \cos(x) + \int_{0}^{x^{2}} \frac{\cos(3t)}{1+t^{2}} dt$.
(a) (2 points) Find $F(0)$.

(b) (3 points) Find F'(0).