Homework 1

Due Wednesday, January 15, 2020

- 1. Calculate $\mathcal{U}(f, \mathcal{P})$ and $\mathcal{L}(f, \mathcal{P})$ for each of the following functions f and partitions \mathcal{P} of [a, b].
 - (a) (3 points) $f(x) = \frac{x}{x+1}$ and $\mathcal{P} = \{0, 1, 2, 3\}$ is a partition of [0, 3]
 - (b) (3 points) $f(x) = \sin(x)$ and $\mathcal{P} = \{0, \frac{\pi}{4}, \frac{3\pi}{4}, \pi\}$ is a partition of $[0, \pi]$
- 2. Let f be a function, continuous on [-1, 1] and take \mathcal{P} to be a partition of [-1, 1]. Show that each of the following three statements is false.
 - (a) (2 points) $\mathcal{L}(f, \mathcal{P}) = 3$ and $\mathcal{U}(f, \mathcal{P}) = 2$
 - (b) (2 points) $\mathcal{L}(f, \mathcal{P}) = 3$, $\mathcal{U}(f, \mathcal{P}) = 6$, and $\int_{-1}^{1} f = 2$

(c) (2 points)
$$\mathcal{L}(f, \mathcal{P}) = 3$$
, $\mathcal{U}(f, \mathcal{P}) = 6$, and $\int_{-1}^{1} f = 10$

3. Recall that

$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1).$$

A regular partition of [a, b] is a partition \mathcal{P} of points $a = x_0 < x_1 < \cdots < x_n = b$ such that

$$x_i - x_{i-1} = \frac{b-a}{n}$$

for each i = 1, ..., n, i.e. the points of the partition are equally spaced.

Let $f(x) = x^2$. For each n, let \mathcal{P}_n be the regular partition of [0, 1] consisting of points

$$\mathfrak{P}_n = \left\{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\right\}.$$

(a) (4 points) Calculate $\mathcal{U}(f, \mathcal{P}_n)$ and $\mathcal{L}(f, \mathcal{P}_n)$ for each n.

(b) (4 points) Evaluate
$$\int_0^1 x^2 dx$$
 and $\underline{\int_0^1} x^2 dx$ by taking the limits as $n \to \infty$.