Midterm 1 Review

25 October 2018

1. Use Mathematical Induction to prove that

(a) For any integer
$$
n \ge 1
$$
, if $0 \le a < b$, then $a^n < b^n$.
\nBase Case: If $n=1$, then $0 \le a < b \implies a < b$ or a .
\nInduchne Step: Let $0 \le a < b$. Assume that $a^n < b^n$. Then
\n $a^{n+1} = a^n \cdot a \quad (\underbrace{\overline{a} \overline{a} \overline{a} \overline{a} \overline{a} \overline{a}}_{=b^{n+1}}) \le a^n \cdot b \quad (a < b)$
\n $= b^{n+1} \quad (\underbrace{\overline{a} \overline{a} \overline{a} \overline{a}}_{=b^{n+1}})$

Therefore, the statement holds the all
(b) For any integer $n \geq 2$,

$$
\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\cdots\left(1-\frac{1}{n}\right)=\frac{1}{n}.
$$
\nBase Case, If $n=2$, then $(1-\frac{1}{2})=\frac{1}{2}$. $\sqrt{2}$ or

\nIndudur Step: If $(1-\frac{1}{2})\cdots(1-\frac{1}{n})=\frac{1}{n}$,

\nThen $(1-\frac{1}{2})\cdots(1-\frac{1}{n})\left(1-\frac{1}{n+1}\right)=\frac{1}{n}\left(\frac{n+1}{n+1}-\frac{1}{n+1}\right)$

\n $=\frac{1}{n}\left(\frac{n+1}{n+1}-\frac{1}{n+1}\right)$

\n $=\frac{1}{n}\left(\frac{n}{n+1}\right)$

\n $=\frac{1}{n}\left(\frac{n}{n+1}\right)$

\n $=\frac{1}{n}$

\nTherefore, by induction, the statement holds for all n=2.

(c) For any integer $n \geq 2$,

$$
\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\cdots\left(1-\frac{1}{n^{2}}\right)=\frac{n+1}{2n}.
$$
\nBase Case For $n=2$,

\n
$$
\left(1-\frac{1}{2^{2}}\right)=\frac{3}{4}
$$
, $\frac{3}{2}$, $\frac{3}{2}$ \n
$$
\frac{\pi}{2}
$$
\n
$$
\left(1-\frac{1}{2^{2}}\right)\cdots\left(1-\frac{1}{n^{2}}\right)=\frac{n+1}{2^{n}}, \quad \frac{3}{2}
$$
\n
$$
\left(1-\frac{1}{(n+1)^{2}}\right)\cdots\left(1-\frac{1}{n^{2}}\right)=\frac{n+1}{2^{n}}, \quad \frac{3}{2}
$$
\n
$$
\left(1-\frac{1}{(n+1)^{2}}\right)\cdots\left(1-\frac{1}{(n+1)^{2}}\right)=\frac{n+1}{2^{n}}\left(\frac{(n+1)^{3}-1}{(n+1)^{2}}\right)=\frac{n+1}{2^{n}}\left(\frac{(n+1)^{3}-1}{n+1}\right)=\frac{n+2}{2^{n}}.
$$
\n
$$
1=\frac{n+2}{2(n+1)}
$$
\n
$$
=\frac{n+2}{2(n+1)}
$$

2. Evaluate the following limits or indicate if they do not exist.

(a)
$$
\lim_{x \to 1} \frac{x}{x+1}
$$
\n $\frac{x}{x+1}$ \n $\frac{x}{x+1} = \frac{1}{1+1} = \frac{1}{2}$ \n\n(a) $\lim_{x \to 1} \frac{x}{x+1} = \frac{1}{1+1} = \frac{1}{2}$ \n\n(b) $\lim_{x \to 0} \frac{x(1+x)}{2x^2} = \lim_{x \to 0} \frac{1+x}{2x}$ \n $\lim_{x \to 0} \frac{x(1+x)}{2x^2} = \lim_{x \to 0} \frac{1+x}{2x}$ \n $\lim_{x \to 0} \frac{x-0}{2x^2} = \lim_{x \to 0} \frac{1+x}{2x}$

(c)
$$
\lim_{x \to 1} \frac{x^4 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x^3 + x^2 + x + 1)}{x - 1}
$$

$$
= \lim_{x \to 1} (x^3 + x^2 + x + 1)
$$

$$
= 1
$$

(d)
$$
\lim_{x\to 9} \frac{x-3}{\sqrt{x}-3}
$$
. Plug in $x=9$, get $\frac{6}{\circ}$. Therefore, this
limit does $\frac{1}{\circ} \frac{1}{\circ} \frac$

(e)
$$
\lim_{x \to 0} x \left(1 - \frac{1}{x} \right) = \lim_{x \to 0} \left(x - 1 \right)
$$

$$
= 0 - 1
$$

$$
= -1
$$

(f)
$$
\lim_{x \to -4} \left(\frac{2x}{x+4} + \frac{8}{x+4} \right) = \lim_{x \to -4} \left(\frac{2x+8}{x+4} \right)
$$

 $= \lim_{x \to -4} \frac{2(x+4)}{x+4}$
 $= \lim_{x \to -4} 2$
 $= \frac{2}{x+4}$

3. Using the $\epsilon-\delta$ definition of limits, prove that

(a)
$$
\lim_{x\to 1} (x^2 - 5x + 2) = -2
$$

\nLet $\sum 0$, $\sum k$ is $\sum \min \{1, \sum \frac{8}{4}\}$. If $0 < |x-1| < \delta_1$ then
\n
$$
\lim_{(x^2 - 5x + 2) - (-2)} \lim_{x \to -1} \frac{|x^2 - 5x + 4|}{x(x-1)x - 4}
$$

\n
$$
\lim_{x \to \delta_1} (x^2 + 2x) = -1
$$

\n(b)
$$
\lim_{x \to -1} (x^2 + 2x) = -1
$$

\n
$$
\lim_{(x^2 + 2x) - (-1)^2} \lim_{x \to \delta_1} \lim_{x \to \delta_1} \lim_{(x^2 - 5x + 2) - (-2)^2} \lim_{x \to \delta_1} (x^2 - 5x + 2) = -2
$$

\n
$$
\lim_{(x^2 + 2x) - (-1)^2} \lim_{x \to \delta_1} \lim_{x \to \delta_1} (x^2 - 5x + 2) = -2
$$

\n
$$
\lim_{(x^2 + 2x) - (-1)^2} \lim_{x \to \delta_1} \lim_{x \to \delta_1} \lim_{x \to \delta_1} (x^2 - 5x + 2) = -2
$$

\n
$$
\lim_{(x^2 + 2x) - (-1)^2} \lim_{x \to \delta_1} \lim_{x \to \delta_1} (x^2 - 5x + 2) = -1
$$

\n
$$
\lim_{(x^2 + 2x) - 1} \lim_{x \to \delta_1} \lim_{x \to \delta
$$

$$
\lim_{x \to c} f(x) = 2 \qquad \lim_{x \to c} g(x) = -1 \qquad \lim_{x \to c} h(x) = 0
$$

evaluate the limits that exist. If the limit does not exist, state why. $\,$

(a)
$$
\lim_{x \to c} [f(x) - g(x)]
$$

= $\left(\lim_{x \to c} f(x)\right) - \left(\lim_{x \to c} g(x)\right)$
= $2 - (-1)$
= 3

(b)
$$
\lim_{x \to c} [f(x)]^2
$$

$$
= \left(\lim_{x \to c} f(x)\right)^2
$$

$$
= \left(2\right)^2
$$

$$
= \boxed{2}
$$

Page $3\,$

(c)
$$
\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)} = \frac{2}{-1} = -2
$$

\n(d)
$$
\lim_{x \to c} \frac{h(x)}{f(x)} = \frac{\lim_{x \to c} h(x)}{\lim_{x \to c} h(x)} = \frac{0}{\lim_{x \to c} -1} = \frac{0}{-1}
$$

\n(e)
$$
\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f(x)}{f(x)} = \frac{\lim_{x \to c} h(x)}{\lim_{x \to c} f(x)} = \frac{0}{2} = 0
$$

5. Determine whether or not the function is continuous at the indicated point. Explain why.

(a)
$$
f(x) = x^3 - 5x + 1
$$
 at $x = 2$
Polynomials are continuous everywhere.

(b)
$$
f(x) =\begin{cases} x^2 + 4, & x < 2 \\ 5, & x = 2 \\ x^3, & x > 2 \end{cases}
$$
 at $x = 2$
\n1) $f(x) = \begin{cases} \frac{1}{2}x^3 + 4x - 2x - 1 \\ \frac{1}{2}x^3 - 2x - 1 \end{cases}$
\n2) $\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} (x^2 + 1) = 8$
\n $\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} (x^3) = 2^3 = 8$
\n $\lim_{x \to 2^{+}} f(x) = \frac{1}{2} \lim_{x \to 2^{+}} (x^3) = 2^3 = 8$
\n3) $\lim_{x \to 2^{+}} f(x) = 8 \neq \frac{4}{3} \left(2^3 = 5$
\n $\lim_{x \to 2^{+}} f(x) = 1$ at $x = -1$
\n $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \frac{x^2 - 1}{x + 1}$
\n $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \frac{x^2 - 1}{x + 1}$
\n $\lim_{x \to 1^{+}} f(x) = 2^{-1} f(-1)$
\n3) $\lim_{x \to 1^{+}} f(x) = 2^{-1} f(-1)$
\n4) $f(x) = \begin{cases} -x^2, & x < 0 \\ 0, & x = 0 \\ 1/x^2, & x > 0 \end{cases}$
\n4) $f(x) = \begin{cases} -x^2, & x < 0 \\ 0, & x = 0 \\ 1/x^2, & x > 0 \end{cases}$
\n5) $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \frac{1}{x}$ has $x \text{ units of } x = 0$
\n6) $f(x) = 0$ is defined as $x \text{ units of } x = 0$

6. Evaluate the limits or indicate if they do not exist.
 $\sin(4\pi)$ $\frac{\sin(4\pi)}{x}$

(a)
$$
\lim_{x \to 0} \frac{\sin(4x)}{\sin(2x)} = \lim_{x \to 0} \frac{\frac{\sin(4x)}{\sin(2x)} \cdot \frac{x}{x}}{\frac{\sin(4x)}{x} \cdot \frac{x}{\sin(2x)}}
$$

$$
= \lim_{x \to 0} \frac{\frac{\sin(4x)}{x} \cdot \frac{x}{\sin(2x)}}{\frac{\sin(4x)}{x} \cdot \frac{2x}{\sin(2x)} \cdot \frac{4}{2}}
$$

$$
= 1 \cdot 1 \cdot 2
$$

$$
= 2
$$

(b)
$$
\lim_{x \to 0} \frac{\sin(x^2)}{x} = \lim_{x \to 0} \frac{\sin(x^2)}{x} \cdot \frac{x}{x}
$$

$$
= \lim_{x \to 0} \frac{\sin(x^2)}{x^2} \cdot x
$$

$$
= 1.0
$$

$$
= \boxed{0}
$$

(c)
$$
\lim_{x \to 0} \frac{\sin(1+x)}{1-x} = \frac{\sin(1)}{1} = \sin(1)
$$
by plugging in.

(d)
$$
\lim_{x \to 0} \frac{2x}{\tan(3x)} = \lim_{x \to 0} \frac{2x}{\sin(3x)} \cdot \cos(3x)
$$

$$
= \lim_{x \to 0} \frac{3x}{\sin(3x)} \cdot \frac{2}{3} \cdot \cos(3x)
$$

$$
= \frac{1}{3} \cdot \frac{2}{3} \cdot 1
$$

(e)
$$
\lim_{x \to 0} \frac{\cos(x) - 1}{2x} = -\frac{1}{2} \lim_{x \to 0} \frac{\lim_{x \to 0} \cos(x)}{x}
$$

(f)
$$
\lim_{x \to 0} \frac{1 - \cos(4x)}{3x} = \lim_{x \to 0} \frac{1 - \cos(4x)}{4x} \cdot \frac{4}{3}
$$

= 0. $\frac{4}{3}$

(g)
$$
\lim_{x \to -1} \frac{\cos(x+1) - 1}{2(x+1)} = \lim_{\substack{\pi \to 0 \\ \pi \to 0}} \frac{\cos(\theta) - 1}{2\theta} = \frac{\pi}{2}
$$
 by (2).

Page $6\,$

(h)
$$
\lim_{x \to 0} \frac{\cos(2x)}{\cos(x)} = \frac{\lim_{x \to 0} \cos(2x)}{\lim_{x \to 0} \cos(x)} = \frac{\cos(2)}{\cos(2)} = 1.
$$

7. Use the Squeeze/Pinching Theorem to calculate

$$
\lim_{x\to 0} x \sin^2(1/x).
$$
\n
$$
\lim_{x\to 0} x \sin^2(1/x).
$$
\nWe have $-15 \sin(\frac{1}{2})5$.\n\n
$$
\lim_{5x \to 0^{\frac{1}{2}} \sin(\frac{1}{2})5} \frac{1}{2}
$$
\n
$$
\lim_{5x \to 0^{\frac{1}{2}} \sin(\frac{1}{2})5} \frac{1}{2}
$$
\n
$$
\lim_{x \to \infty} \lim_{x \to \infty} \lim_{x \to \infty} \frac{1}{2} \sin^{-1}(\frac{1}{2}x - \frac{1}{2}x))
$$
\n
$$
\lim_{x \to \infty} \lim_{x \to \infty}
$$

8. Use the Squeeze/Pinching Theorem to calculate

$$
\lim_{x \to \pi} \left((x - \pi) \cos^2 \left(\frac{1}{x - \pi} \right) \right).
$$
\n
$$
\lim_{x \to \pi} \left((x - \pi) \cos^2 \left(\frac{1}{x - \pi} \right) \right).
$$
\n
$$
\lim_{x \to \pi} \frac{1}{\sin^2 \left(\frac{x}{\sqrt{1 - \frac{1}{\sqrt{1 - \frac
$$

9. Use the Intermediate Value Theorem to show that there is a solution of the given equation in the indicated interval.

(a)
$$
2x^3 - 4x^2 + 5x - 4 = 0
$$
; [1, 2]
\nLet $f(x) = 2x^3 - 4x^2 + 5x - 1$. Then f is continuous everywhere, so f
\nis continuous on $[1,2]$. We have
\nis continuous on $[1,2]$. We have
\n $f(2) = 2 - 4 + 5 - 4 = -1$
\n $f(2) = 2(8) - 4(4) + 5(2) - 4 = 16 - 16 + 10 - 4 = 6$
\n $f(2) = 2(8) - 4(4) + 5(2) - 4$
\nSince O is between -1 and 6 , 6 and 16
\nsuch that $f(4) = 0$ and C lies in $(1,2)$.

(b)
$$
sin(x) + 2 cos(x) - x^2 = 0; [0, \pi/2]
$$

\nLet $f(x) = sin(x) + 2 cos(x) - x^2$. Then f continuous complex, M
\n $tanh(x)$ on $[0, \pi/2]$. Use *have*
\n $f(0) = 0 + 2 - 0^2 = 2$ $\frac{\pi}{4} < 0$.
\n $f(\pi/2) = +0 - (\frac{\pi}{2})^2 = 1 - \frac{\pi}{4} < 0$.
\nSince 0 lies between 2 and $1 - \frac{\pi}{4}$, there is some c such that $36e^{-\pi}0$. $(0, +\frac{1}{16} \pi/2)$.
\n $sin(a) = 0$ lies between 2 and $1 - \frac{\pi}{4}$, there is $cos(x) = cos(x)$ and $cos(x) = 0$.
\n(c) $x^3 = \sqrt{x+2}; [1, 2]$
\n $1 + \frac{1}{10} = x^2 - \frac{\sqrt{x+2}}{2}$, $tan \frac{1}{10} = \frac{1}{10}$ is continuous on $(-2, \infty)$ so π
\nis continuous on $[0,2]$. Then
\nis continuous on $[0,2]$ and $tan(x) = 2^2 - \frac{\sqrt{x+2}}{2} = 0$
\n $1 + \frac{1}{10} = 2 + \frac{1}{10} = 1$
\n $1 + \frac{1}{10} = 2 + \frac{1}{10} = 1$
\n $1 + \frac{1}{10} = 2 + \frac{1}{10} = \frac{1}{10}$
\n $1 + \frac{1}{10} = 2 + \frac{1}{10} = \frac{1}{10}$
\n $1 + \frac{1}{10} = 2 + \frac{1}{10} = \frac{1}{10}$
\n $1 + \frac{1}{10} = 2 + \frac{1}{10} = \frac{1}{10}$
\n $1 + \frac{1}{10} = 2 + \frac{1}{10} = \frac{1}{10}$
\n $1 +$